留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定信息下分式半无限优化问题的近似最优性刻画

冯欣怡 孙祥凯

冯欣怡,孙祥凯. 不确定信息下分式半无限优化问题的近似最优性刻画 [J]. 应用数学和力学,2022,43(6):682-689 doi: 10.21656/1000-0887.420248
引用本文: 冯欣怡,孙祥凯. 不确定信息下分式半无限优化问题的近似最优性刻画 [J]. 应用数学和力学,2022,43(6):682-689 doi: 10.21656/1000-0887.420248
FENG Xinyi, SUN Xiangkai. Characterizations of Approximate Optimality Conditions for Fractional Semi-Infinite Optimization Problems With Uncertainty[J]. Applied Mathematics and Mechanics, 2022, 43(6): 682-689. doi: 10.21656/1000-0887.420248
Citation: FENG Xinyi, SUN Xiangkai. Characterizations of Approximate Optimality Conditions for Fractional Semi-Infinite Optimization Problems With Uncertainty[J]. Applied Mathematics and Mechanics, 2022, 43(6): 682-689. doi: 10.21656/1000-0887.420248

不确定信息下分式半无限优化问题的近似最优性刻画

doi: 10.21656/1000-0887.420248
基金项目: 国家自然科学基金(11701057);重庆市自然科学基金(cstc2020jcyj-msxmX0016);重庆市重点实验室开放课题(KFJJ2019097);重庆市巴渝学者青年学者项目
详细信息
    作者简介:

    冯欣怡(1996—),女,硕士生(E-mail:fengxycq@163.com

    孙祥凯(1984—),男,教授,博士(通讯作者. E-mail:sxkcqu@163.com

  • 中图分类号: O221.6; O224

Characterizations of Approximate Optimality Conditions for Fractional Semi-Infinite Optimization Problems With Uncertainty

  • 摘要:

    该文研究了一类带不确定参数的多目标分式半无限优化问题。首先借助鲁棒优化方法,引入该不确定多目标分式优化问题的鲁棒对应优化模型,并借助Dinkelbach方法,将该鲁棒对应优化模型转化为一般的多目标优化问题。随后借助一种标量化方法,建立了该优化问题的标量化问题,并刻画了它们的解之间的关系。最后借助一类鲁棒型次微分约束规格,建立了该不确定多目标分式优化问题拟近似有效解的鲁棒最优性条件。

  • [1] DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492-498. doi: 10.1287/mnsc.13.7.492
    [2] YANG X M, TEO K L, YANG X Q. Symmetric duality for a class of nonlinear fractional programming problems[J]. Journal of Mathematical Analysis and Applications, 2002, 271(1): 7-15. doi: 10.1016/S0022-247X(02)00042-2
    [3] LONG X J, HUANG N J, LIU Z B. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs[J]. Journal of Industrial and Management Optimization, 2008, 4(2): 287-298. doi: 10.3934/jimo.2008.4.287
    [4] SUN X K, CHAI Y, ZENG J. Farkas-type results for constrained fractional programming with DC functions[J]. Optimization Letters, 2014, 8: 2299-2313. doi: 10.1007/s11590-014-0737-7
    [5] ZHOU Z A, CHEN W. Optimality conditions and duality of the set-valued fractional programming[J]. Pacific Journal of Optimization, 2019, 15(4): 639-651.
    [6] LIU J C, YOKOYAMA K. $ \varepsilon $-optimality and duality for multiobjective fractional programming[J]. Computers and Mathematics With Applications, 1999, 37(8): 119-128. doi: 10.1016/S0898-1221(99)00105-4
    [7] GUPTA P, SHIRAISHI S, YOKOYAMA K. $ \varepsilon $-optimality without constraint qualification for multiobjective fractional problem[J]. Journal of Nonlinear and Convex Analysis, 2005, 6(2): 347-357.
    [8] VERMA R U. Weak $ \varepsilon $-efficiency conditions for multiobjective fractional programming[J]. Applied Mathematics and Computation, 2013, 219(12): 6819-6827. doi: 10.1016/j.amc.2012.12.087
    [9] KIM M H, KIM G S, LEE G M. On $ \varepsilon $-optimality conditions for multiobjective fractional optimization problems[J]. Fixed Point Theory and Applications, 2011, 2011: 6. doi: 10.1186/1687-1812-2011-6
    [10] LI G Y, JEYAKUMAR V, LEE G M. Robust conjugate duality for convex optimization under uncertainty with application to data classification[J]. Nonlinear Analysis, 2011, 74(6): 2327-2341. doi: 10.1016/j.na.2010.11.036
    [11] SUN X K, LI X B, LONG X J, et al. On robust approximate optimal solutions for uncertain convex optimization and applications to multi-objective optimization[J]. Pacific Journal of Optimization, 2017, 13(4): 621-643.
    [12] FAKHAR M, MAHYARINIA M, ZAFARANI J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization[J]. European Journal of Operational Research, 2018, 265(1): 39-48. doi: 10.1016/j.ejor.2017.08.003
    [13] SUN X K, TEO K L, ZENG J, et al. Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty[J]. Optimization, 2020, 69(9): 2109-2129. doi: 10.1080/02331934.2020.1763990
    [14] 赵丹, 孙祥凯. 非凸多目标优化模型的一类鲁棒逼近最优性条件[J]. 应用数学和力学, 2019, 40(6): 694-700. (ZHANG Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 694-700.(in Chinese)

    ZHANG Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 694-700. (in Chinese))
    [15] LEE J H, LEE G M. On $ \varepsilon $-solutions for robust fractional optimization problems[J]. Journal of Inequalities and Applications, 2014, 2014: 501. doi: 10.1186/1029-242X-2014-501
    [16] ZENG J, XU P, FU H Y. On robust approximate optimal solutions for fractional semi-infinite optimization with uncertainty data[J]. Journal of Inequalities and Applications, 2019, 2019: 45. doi: 10.1186/s13660-019-1997-7
    [17] BEN-TAL A, GHAOUI L E, NEMIROVSKI A. Robust Optimization[M]. Princeton: Princeton University Press, 2009.
    [18] CLARKE F H. Optimization and Nonsmooth Analysis[M]. New York: John Wiley and Sons Inc, 1983.
    [19] ANTCZAK T. Parametric approach for approximate efficiency of robust multiobjective fractional programming problems[J]. Mathematical Methods in Applied Sciences, 2021, 44(14): 11211-11230. doi: 10.1002/mma.7482
    [20] LONG X J, XIAO Y B, HUANG N J. Optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems[J]. Journal of the Operations Research Society of China, 2018, 6(2): 289-299. doi: 10.1007/s40305-017-0167-1
    [21] 刘娟, 龙宪军. 非光滑多目标半无限规划问题的混合型对偶[J]. 应用数学和力学, 2021, 42(6): 595-601. (LIU Juan, LONG Xianjun. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601.(in Chinese)

    LIU Juan, LONG Xianjun. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601. (in Chinese)
  • 加载中
计量
  • 文章访问数:  122
  • HTML全文浏览量:  57
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25
  • 修回日期:  2021-09-26
  • 网络出版日期:  2022-04-13
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回