留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主动冷却点阵夹层防热结构温度响应计算模型

彭世彬 郭瑞 冯上升 金峰

彭世彬,郭瑞,冯上升,金峰. 主动冷却点阵夹层防热结构温度响应计算模型 [J]. 应用数学和力学,2022,43(X):1-13 doi: 10.21656/1000-0887.420405
引用本文: 彭世彬,郭瑞,冯上升,金峰. 主动冷却点阵夹层防热结构温度响应计算模型 [J]. 应用数学和力学,2022,43(X):1-13 doi: 10.21656/1000-0887.420405
Shibin PENG, Rui GUO, Shangsheng FENG, Feng JIN. Calculation Model of Temperature Response of Active Cooling Lattice Sandwich Panel for Thermal Protection[J]. Applied Mathematics and Mechanics. doi: 10.21656/1000-0887.420405
Citation: Shibin PENG, Rui GUO, Shangsheng FENG, Feng JIN. Calculation Model of Temperature Response of Active Cooling Lattice Sandwich Panel for Thermal Protection[J]. Applied Mathematics and Mechanics. doi: 10.21656/1000-0887.420405

主动冷却点阵夹层防热结构温度响应计算模型

doi: 10.21656/1000-0887.420405
基金项目: 国家自然科学基金(51676156);国家重点研发项目(2017YFB1102801)
详细信息
    作者简介:

    彭世彬(1997—),男,硕士(E-mail:psb315@stu.xjtu.edu.cn

    冯上升(1984—),男,副教授,博士,硕士生导师(通讯作者. E-mail:shangshengfeng@xjtu.edu.cn

    金峰(1968—),男,教授,博士,博士生导师(通讯作者. E-mail:jinzhao@mail.xjtu.edu.cn

  • 中图分类号: TK124; O342

Calculation Model of Temperature Response of Active Cooling Lattice Sandwich Panel for Thermal Protection

  • 摘要: 针对点阵夹层结构主动热防护问题,建立了夹层结构面板和芯体导热与冷却剂对流耦合的非稳态传热理论模型,利用有限体积法离散控制方程并在MATLAB中进行了迭代求解;模型首次考虑了面板与夹芯杆之间的收缩热阻,并利用分离变量法得到了收缩热阻的近似解析解;基于单胞模型和周期性边界条件,模拟得到了模型所需的表面对流传热系数hbhfin;最后,选取多单胞计算工况进行数值模拟和理论模型对比,并讨论了收缩热阻对模型预测精度的影响。结果表明:理论模型能够准确预测夹层结构及内部流体的温度变化,理论与仿真之间的最大误差不超过1%;随着外加热流密度不断增大,忽略收缩热阻使得计算结果造成的误差不断增大;与数值模拟相比,理论模型可显著减少计算时间并节省计算资源,尤其适用于非均匀、非稳态复杂热载荷下点阵夹层结构的温度响应计算。
  • 图  1  金字塔型点阵金属夹芯结构的强制对流换热示意图

    Figure  1.  Schematic of forced convection heat transfer of pyramidal lattice metal sandwich structure

    图  2  点阵夹层结构及内部流体的离散示意图

    Figure  2.  Discrete diagram of lattice sandwich structure and internal fluid

    图  3  周期性流动传热数值模拟:(a) 计算域及边界条件;(b) 网格

    Figure  3.  Numerical simulation of periodic flow and heat transfer: (a) computational domain and boundary conditions; (b) mesh

    图  4  不同Red下夹芯杆表面的对流换热系数

    Figure  4.  Heat transfer coefficient on the surface of lattice strut under different Red

    图  5  求解收缩热阻的等效模型

    Figure  5.  Equivalent model for solving constriction thermal resistance

    图  6  含多个单胞点阵夹层结构数值模拟计算域及边界条件

    Figure  6.  Numerical simulation domain and boundary conditions for multi-cell lattice sandwich structure

    图  7  加热面平均温度随网格数量的变化曲线

    Figure  7.  Variation curve of the average temperature of heating surface with the number of meshes

    图  8  RLV再入过程中表面的入射热通量随时间的变化曲线

    Figure  8.  Incident heat flux profile with re-entry time on the RLV surface

    图  9  结构最大温度与流体出口温度的变化曲线:(a) 结构最大温度;(b) 流体出口温度

    Figure  9.  Variation curves of the maximum temperature of the sandwich structure and the outlet temperature of fluid with time: (a) maximum temperature of the sandwich structure; (b) outlet temperature of fluid

    图  10  不同热流密度下结构的最大温度

    Figure  10.  The maximum temperature of the structure under different heat flux

    图  11  不同流体进口速度下收缩热阻随导热率的变化曲线

    Figure  11.  Variation curves of constriction thermal resistance with thermal conductivity under different fluid inlet velocities

    图  12  不同流体进口速度下收缩热阻随面板厚度的变化曲线

    Figure  12.  Variation curves of constriction thermal resistance with facesheet thickness under different fluid inlet velocities

  • [1] 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517-535. (LU Tianjian, HE Deping, CHEN Changqing, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006, 36(4): 517-535.(in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.004
    [2] 陈东, 吴永鹏, 李忠盛, 等. 轻质高强多功能点阵夹层结构研究进展[J]. 装备环境工程, 2020, 17(4): 77-84. (CHEN Dong, WU Yongpeng, LI Zhongsheg, et al. Research progress of light weight, high strength and multi-function lattice sandwich structure[J]. Equipment Environmental Engineering, 2020, 17(4): 77-84.(in Chinese)
    [3] PAN C, HAN Y, LU J. Design and optimization of lattice structures: a review[J]. Applied Sciences, 2020, 10(18): 6374. doi: 10.3390/app10186374
    [4] FERRARI L, BARBATO M, ESSER B, et al. Sandwich structured ceramic matrix composites with periodic cellular ceramic cores: an active cooled thermal protection for space vehicles[J]. Composite Structures, 2016, 154: 61-68. doi: 10.1016/j.compstruct.2016.07.043
    [5] SONG J, SUN B. Coupled numerical simulation of combustion and regenerative cooling in LOX/Methane rocket engines[J]. Applied Thermal Engineering, 2016, 106: 762-773. doi: 10.1016/j.applthermaleng.2016.05.130
    [6] FENG S S, LI M Z, JOO J H, et al. Thermomechanical properties of brazed wire-woven bulk Kagome cellular metals for multifunctional applications[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(1): 66-74. doi: 10.2514/1.49434
    [7] WADLEY H N G. Multifunctional periodic cellular metals[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2006, 364(1838): 31-68. doi: 10.1098/rsta.2005.1697
    [8] KIM T, ZHAO C Y, LU T J, et al. Convective heat dissipation with lattice-frame materials[J]. Mechanics of Materials, 2004, 36(8): 767-780. doi: 10.1016/j.mechmat.2003.07.001
    [9] LU T J, VALDEVIT L, EVANS A G. Active cooling by metallic sandwich structures with periodic cores[J]. Progress in Materials Science, 2005, 50(7): 789-815. doi: 10.1016/j.pmatsci.2005.03.001
    [10] YAN H, ZHANG Q, CHEN W, et al. An X-lattice cored rectangular honeycomb with enhanced convective heat transfer performance[J]. Applied Thermal Engineering, 2020, 166: 114687. doi: 10.1016/j.applthermaleng.2019.114687
    [11] YAN H B, ZHANG Q C, LU T J, et al. A lightweight X-type metallic lattice in single-phase forced convection[J]. International Journal of Heat and Mass Transfer, 2015, 83: 273-283. doi: 10.1016/j.ijheatmasstransfer.2014.11.061
    [12] TAKARAZAWA S, USHIJIMA K, FLEISCHHAUER R, et al. Heat-transfer and pressure drop characteristics of micro-lattice materials fabricated by selective laser metal melting technology[J]. Heat and Mass Transfer, 2022, 58: 125-141. doi: 10.1007/s00231-021-03083-0
    [13] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001

    TAO Wenquan. Numerical Heat Transfer [M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001. (in Chinese)
    [14] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1): 625-632.
    [15] ŽUKAUSKAS A. Heat transfer from tubes in crossflow[J]. Advances in Heat Transfer, 1972, 8: 93-160.
    [16] MUZYCHKA Y S, SRIDHAR M R, YOVANOVICH M M, et al. Thermal spreading resistance in multilayered contacts: applications in thermal contact resistance[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 489-494. doi: 10.2514/2.6466
    [17] HUANG M J, SHAW Y R, CHIEN H C. Thermal spreading resistance of heat sources on rectangular flux channel under non-uniform convective cooling[J]. International Journal of Thermal Sciences, 2019, 145: 105979. doi: 10.1016/j.ijthermalsci.2019.105979
    [18] HE Y R, WANG X Z, HAN J C, et al. Numerical investigation on actively cooled thermal protection systems with Ni-based alloys[J]. Journal of Propulsion and Power, 2014, 30(3): 604-616. doi: 10.2514/1.B34676
    [19] KUMAR S, MAHULIKAR S P. Reconstruction of aero-thermal heating and thermal protection material response of a reusable launch vehicle using inverse method[J]. Applied Thermal Engineering, 2016, 103: 344-355. doi: 10.1016/j.applthermaleng.2016.04.100
  • 加载中
图(12)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  19
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 修回日期:  2022-02-25
  • 网络出版日期:  2022-04-08

目录

    /

    返回文章
    返回