留言板

 引用本文: 王霄婷，龙宪军，彭再云. 求解非单调变分不等式的一种二次投影算法 [J]. 应用数学和力学，2022，43（X）：1-8
Wang Xiaoting, Long Xianjun, Peng Zaiyun. A Double Projection Algorithm for Solving Non-monotone Variational Inequalities.[J]. Applied Mathematics and Mechanics. doi: 10.21656/1000-0887.420414
 Citation: Wang Xiaoting, Long Xianjun, Peng Zaiyun. A Double Projection Algorithm for Solving Non-monotone Variational Inequalities.[J]. Applied Mathematics and Mechanics.

• 中图分类号: O224

A Double Projection Algorithm for Solving Non-monotone Variational Inequalities.

• 摘要: 投影算法是求解变分不等式问题的主要方法之一。目前，有关投影算法的研究通常需要假设映射是单调且Lipschitz连续的，然而在实际问题中，这些假设条件往往是不满足的。本文利用线搜索方法，提出了一种新的求解非单调变分不等式问题的二次投影算法。在一致连续假设下，证明了算法产生的迭代序列强收敛到变分不等式问题的解。数值实验结果表明了该文所提算法的有效性和优越性。
•  [1] KINDERLEHRER D, STAMPACCHIA G. An Introduction to Variational Inequalities and Their Applications[M]. New York: Academic Press, 1980. [2] FACHINEL F, PANG J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York: Springer, 2003. [3] HE Y R. A new double projection algorithm for variational inequalities[J]. Journal of Computational and Applied Mathematics, 2006, 185(1): 166-173. [4] XU H K. Iterative algorithms for nonlinear operators[J]. Journal of the London Mathematical Society, 2002, 66(1): 240-256. [5] HE X, HUANG N J, LI X S. Modified projection methods for solving multi-valued variational inequality without monotonicity[J]. Networks and Spatial Economics, 2019. [6] 贺月红, 龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法[J]. 数学物理学报, 2021, 41A(6): 1897-1911. (HE Yuehong, LONG Xianjun. A inertial contraction and projection algorithm for pseudomonotone variational inequalities problems[J]. Acta Mathematica Scientia, 2021, 41A(6): 1897-1911.(in Chinese)HE Yuehong, LONG Xianjun. A inertial contraction and projection algorithm for pseudomonotone variational inequalities problems[J]. Acta Mathematica Scientia, 2021, 41A(6): 1897-1911. (in Chinese) [7] 万升联. 解变分不等式的一种二次投影算法[J]. 数学物理学报, 2021, 41A(1): 237-244. (WAN Shenglian. A double projection algorithm for solving variational inequalities[J]. Acta Mathematica Scientia, 2021, 41A(1): 237-244.(in Chinese)WAN Shenglian. A double projection algorithm for solving variational inequalities[J]. Acta Mathematica Scientia, 2021, 41A(1): 237-244. (in Chinese) [8] 杨军. 非单调变分不等式黄金分割算法研究[J]. 应用数学和力学, 2021, 42(7): 764-770. (YANG Jun. A golden ratio algorithm for solving nonmonotone variational inequalities[J]. Applied Mathematics and Mechanics, 2021, 42(7): 764-770.(in Chinese)YANG Jun. A golden ratio algorithm for solving nonmonotone variational inequalities[J]. Applied Mathematics and Mechanics, 2021, 42(7): 764-770. (in Chinese) [9] YE M L, HE Y R. A double projection method for solving variational inequalities without monotonicity[J]. Computational Optimization and Applications, 2015, 60(1): 141-150. [10] HE B S. A class of projection and contraction methods for monotone variational inequalities[J]. Applied Mathematics and Optimization, 1997, 35: 69-76. [11] GOLDSTEIN A. Convex programming in Hilbert space[J]. Bulltin of the American Mathematical Society, 1964, 70(5): 709-710. [12] KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J]. Ekonomika I Matematicheskie Metody, 1976, 12: 747-756. [13] SOLODOV M V, SVAITER B F. A new projection method for variational inequality problems[J]. SIAM Journal on Control and Optimization, 1999, 37(3): 765-776. [14] VUONG P T, SHEHU Y. Convergence of an extragradient-type method for variational inequality with applications to optimal control problems[J]. Numerical Algorithms, 2019, 81(1): 269-291. [15] REICH S, THONG D V, DONG Q L, et al. New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings[J]. Numerical Algorithms, 2021, 87(2): 527-549. [16] HE Y R. Solvability of the minty variational inequality[J]. Journal of Optimization Theory and Applications, 2017, 174(3): 686-692.

计量
• 文章访问数:  14
• HTML全文浏览量:  10
• PDF下载量:  3
• 被引次数: 0
出版历程
• 收稿日期:  2021-12-31
• 修回日期:  2022-03-23
• 网络出版日期:  2022-06-21

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈