留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图形化薄膜等效弹性模量的声表面波表征研究

陈龙 肖夏 张立 戚海洋

陈龙, 肖夏, 张立, 戚海洋. 图形化薄膜等效弹性模量的声表面波表征研究[J]. 应用数学和力学, 2023, 44(4): 381-393. doi: 10.21656/1000-0887.430050
引用本文: 陈龙, 肖夏, 张立, 戚海洋. 图形化薄膜等效弹性模量的声表面波表征研究[J]. 应用数学和力学, 2023, 44(4): 381-393. doi: 10.21656/1000-0887.430050
CHEN Long, XIAO Xia, ZHANG Li, QI Haiyang. Surface Acoustic Wave Characterization of Equivalent Young's Moduli for Patterned Films[J]. Applied Mathematics and Mechanics, 2023, 44(4): 381-393. doi: 10.21656/1000-0887.430050
Citation: CHEN Long, XIAO Xia, ZHANG Li, QI Haiyang. Surface Acoustic Wave Characterization of Equivalent Young's Moduli for Patterned Films[J]. Applied Mathematics and Mechanics, 2023, 44(4): 381-393. doi: 10.21656/1000-0887.430050

图形化薄膜等效弹性模量的声表面波表征研究

doi: 10.21656/1000-0887.430050
基金项目: 

国家自然科学基金项目 61571319

详细信息
    作者简介:

    陈龙(1997—),男,硕士生(E-mail: chenlong_cl@yeah.net)

    通讯作者:

    肖夏(1971—),女,教授,博士,博士生导师(通讯作者. E-mail: xiaxiao@tju.edu.cn)

  • 中图分类号: O341;TN47

Surface Acoustic Wave Characterization of Equivalent Young's Moduli for Patterned Films

  • 摘要: 基于分层材料等效弹性性质理论,建立了单大马士革和双大马士革结构的细观力学等效模型. 通过引入图形化结构等效弹性常数,建立了声表面波在图形化薄膜/衬底分层结构中的传播模型,利用Green函数和矩阵法计算得到了表面波理论色散曲线. 采用有限元法计算了24种不同体积比的大马士革结构数值算例,并与能量法计算结果进行了对比验证. 结果表明,厚度为300 nm的双大马士革薄膜和厚度为100 nm的单大马士革薄膜等效弹性模量平均相对误差分别为2.06%和2.27%. 验证了等效图形化结构模型的正确性以及声表面波方法表征图形化薄膜机械特性的可行性,研究结果可为开发适用于图形化薄膜、低压力的化学机械抛光工艺提供参考.
  • 图  1  分层材料及其代表性体积单元[23]

    Figure  1.  The schematic diagram of the layered material and the representative volume unit[23]

    图  2  单大马士革结构代表体积单元

    Figure  2.  The representative volume unit of the single damascene structure

    图  3  双大马士革结构代表体积单元

    Figure  3.  The representative volume unit of the dual damascene structure

    图  4  表面波在双大马士革薄膜/硅衬底结构中的传播

    Figure  4.  The schematic diagram of SAWs propagating in the dual damascene film/substrate

    图  5  膜厚为300 nm下表面波在表 1的不同图形化薄膜中沿Si[100]晶向传播的色散曲线

    Figure  5.  Dispersion curves of surface acoustic waves propagating along the Si[100] direction in different patterned films in table 1 with a film thickness of 300 nm

    图  6  图形化薄膜/硅衬底有限元网格化模型

    Figure  6.  The finite element meshing model for the patterned film/silicon substrate

    图  7  模型的表面振型及特征频率

       为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  7.  The surface modes and eigenfrequencies of the model

    图  8  膜厚为300 nm下表面波在表 1编号⑥对应双大马士革薄膜中沿Si[100]晶向传播的理论和仿真色散曲线

    Figure  8.  Theoretical and simulated dispersion curves of surface acoustic waves propagating along the Si[100] direction in the dual damascene film corresponding to case ⑥ in table 1 with a film thickness of 300 nm

    图  9  表面波沿Si[100]晶向传播时单大马士革薄膜(表 4编号⑤)厚度对色散关系的影响

    Figure  9.  Influences of the single damascene film thickness (case ⑤ in table 4) on the dispersion relation for the surface wave propagating along the Si[100] direction

    表  1  双大马士革薄膜参数(参数标记见图 3)和对应编号

    Table  1.   Dual damascene film parameters (see fig. 3 for parameter labels) and corresponding numbers

    case No. w1/nm h1/nm w2/nm h2/nm
    homogeneous low-k material
    50 100 50 200
    50 100 60 200
    50 100 90 200
    50 100 120 200
    50 100 150 200
    50 100 180 200
    50 100 210 200
    50 100 240 200
    50 100 270 200
    homogeneous copper material
    下载: 导出CSV

    表  2  仿真模型的波长-频率-速度值

    Table  2.   Wavelength-frequency-velocity values for the simulation model

    wavelength λ/μm average eigenfrequency f/MHz velocity v/(m/s)
    990 4.964 4 914.36
    480 10.23 4 910.40
    210 23.32 4 897.20
    129 37.87 4 885.23
    99 49.24 4 874.76
    81 60.06 4 864.86
    60 80.76 4 845.60
    51 94.75 4 832.25
    45 107.12 4 820.40
    42 114.61 4 813.62
    39 123.21 4 805.19
    36 133.20 4 795.20
    33 144.96 4 783.68
    30 158.99 4 769.70
    27 176.02 4 752.54
    24 197.12 4 730.88
    下载: 导出CSV

    表  3  双大马士革薄膜(hf=300 nm)等效弹性模量匹配结果

    Table  3.   Matching results of the dual damascene structure with thickness hf=300 nm

    case No. volume(Cu: low-k) SAW method strain energy method Ef/Efenergy)/%
    Ef/GPa Efenergy/GPa
    0∶1 (full of low-k) 9.90 10.00 1.00
    1∶5.0 12.87 13.23 2.72
    1∶4.3 13.37 13.64 1.98
    1∶2.9 14.63 15.01 2.53
    1∶2.1 16.94 16.72 1.32
    1∶1.6 18.74 18.96 1.16
    1∶1.2 22.01 22.08 0.32
    1.1∶1 26.20 26.71 1.91
    1.4∶1 33.00 34.34 3.90
    1.9∶1 47.74 49.39 3.34
    1∶0 (full of Cu) 129.90 130.00 0.08
    下载: 导出CSV

    表  4  单大马士革薄膜(hf=100 nm)等效弹性模量匹配结果

    Table  4.   Matching results of the single damascene structure with thickness hf=100 nm

    case No. volume(Cu: low-k) SAW method strain energy method Ef/Efenergy)/%
    Ef/GPa Efenergy/GPa
    1∶9 11.78 12.06 2.32
    1∶7 12.07 12.48 3.29
    1∶5 12.87 13.23 2.72
    1∶4 13.56 13.83 1.95
    1∶3 14.73 14.79 0.41
    1∶2 16.76 16.59 1.02
    1∶1 21.79 21.58 0.97
    2∶1 30.52 30.27 0.83
    3∶1 37.24 37.68 1.17
    4∶1 42.87 44.02 2.61
    5∶1 47.32 49.42 4.25
    7∶1 56.28 58.69 4.11
    9∶1 63.50 66.06 3.88
    下载: 导出CSV
  • [1] EDELSTEIN D, HEIDENREICH J, GOLDBLATT R, et al. Full copper wiring in a sub-0.25 μm CMOS ULSI technology[C]//1997 International Electron Devices Meeting (IEDM). Washington DC, USA, 1997: 773-776.
    [2] 王阳元, 康晋锋. 超深亚微米集成电路中的互连问题: 低k介质与Cu的互连集成技术[J]. 半导体学报, 2002, 23(11): 1121-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTX200211000.htm

    WANG Yangyuan, KANG Jinfeng. Development of ULSI interconnect integration technology: copper interconnect with low-k dielectrics[J]. Chinese Journal of Semiconductors, 2002, 23(11): 1121-1134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BDTX200211000.htm
    [3] HUANG K Y, CHI H Y, KAO P K, et al. Atmospheric pressure plasma jet assisted synthesis of zeolite-based low-k thin films[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 900-908.
    [4] LI G L, ZHENG G, DING Z J, et al. High-performance ultra-low-k fluorine-doped nanoporous organosilica films for inter-layer dielectric[J]. Journal of Materials Science, 2019, 54(3): 2379-2391. doi: 10.1007/s10853-018-3013-x
    [5] GHIDELLI M, SEBASTIANI M, COLLET C, et al. Determination of the elastic moduli and residual stresses of freestanding Au-TiW bilayer thin films by nanoindentation[J]. Materials & Design, 2016, 106: 436-445. doi: 10.3969/j.issn.1007-9629.2016.03.004
    [6] HUMOOD M, ASIF A, GUIN T, et al. Nanoindentation and nanoscratch of sub-micron polymer nanocomposite films on compliant substrate[J]. Thin Solid Films, 2021, 736: 138905. doi: 10.1016/j.tsf.2021.138905
    [7] JAVED H, MERLE B, PREISS E, et al. Mechanical characterization of metallic thin films by bulge and scratch testing[J]. Surface and Coatings Technology, 2016, 289: 69-74. doi: 10.1016/j.surfcoat.2016.01.051
    [8] ZIZKA J, KING S, EVERY A, et al. Acoustic phonons and mechanical properties of ultra-thin porous low-k films: a surface Brillouin scattering study[J]. Journal of Electronic Materials, 2018, 47(7): 3942-3950. doi: 10.1007/s11664-018-6276-8
    [9] OVCHINNIKOV I S, VISHNEVSKIY A S, SEREGIN D S, et al. Evaluation of mechanical properties of porous OSG films by PFQNM AFM and benchmarking with traditional instrumentation[J]. Langmuir, 2020, 36(32): 9377-9387. doi: 10.1021/acs.langmuir.0c01054
    [10] KOPYCINSKA-MVLLER M, CLAUSNER A, YEAP K B, et al. Mechanical characterization of porous nano-thin films by use of atomic force acoustic microscopy[J]. Ultramicroscopy, 2016, 162: 82-90. doi: 10.1016/j.ultramic.2015.12.001
    [11] SCHNEIDER D, SCHULTRICH B, SCHEIBE H J, et al. A laser-acoustic method for testing and classifying hard surface layers[J]. Thin Solid Films, 1998, 332(1/2): 157-163.
    [12] HERNANDEZ-VALLE F, DUTTON B, EDWARDS R S. Laser ultrasonic characterisation of branched surface-breaking defects[J]. NDT & E International, 2014, 68: 113-119.
    [13] LIU Z, LIN B, LIANG X, et al. Inversion of surface damage and residual stress in ground silicon wafers by laser surface acoustic wave technology[J]. Ultrasonics, 2021, 113: 106367. doi: 10.1016/j.ultras.2021.106367
    [14] FALL D, COMPOINT F, DUQUENNOY M, et al. Surface acoustic wave characterization of optical sol-gel thin layers[J]. Ultrasonics, 2016, 68: 102-107. doi: 10.1016/j.ultras.2016.02.006
    [15] ALVES C F A, MARQUES L, CALDERON V S, et al. An experimental and theoretical study on the crystal structure and elastic properties of Ta1-xOx coatings[J]. Surface and Coatings Technology, 2019, 364: 289-297. doi: 10.1016/j.surfcoat.2019.02.054
    [16] NAKAMURA N, YOKOMURA R, TAKEUCHI N, et al. Elastic stiffness of metallic multilayers studied by picosecond ultrasonics: improved interpretation of interface elasticity[J]. Japanese Journal of Applied Physics, 2019, 58(7): 075504. doi: 10.7567/1347-4065/ab242b
    [17] 古普塔S, 维施瓦卡尔玛S K, 玛里D K, 等. 密度和刚度线性变化对非均匀地壳层中扭转表面波传播的影响[J]. 应用数学和力学, 2012, 33(10): 1156-1169. doi: 10.3879/j.issn.1000-0887.2012.10.002

    GUPTA S, VISHWAKARMA S K, MAJHI D K, et al. Influence of linearly varying density and rigidity on torsional surface waves in an inhomogeneous crustal layer[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1156-1169. (in Chinese) doi: 10.3879/j.issn.1000-0887.2012.10.002
    [18] 库玛R, 库玛R, 黄锋. 各向同性弹性半空间与带孔隙横观各向同性热弹性材料界面上波的传播[J]. 应用数学和力学, 2010, 31(9): 1101-1117. doi: 10.3879/j.issn.1000-0887.2010.09.010

    KUMAR R, KUMAR R, HUANG Feng. Propagation of wave at the boundary surface of transversely isotropic thermoelastic material with voids and isotropic elastic half-space[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1101-1117. (in Chinese) doi: 10.3879/j.issn.1000-0887.2010.09.010
    [19] LI C, GUAN G, WANG R, et al. Mechanical characterization of skin using surface acoustic waves[M]//Imaging in Dermatology. New York: Academic Press, 2016: 327-340.
    [20] ZHANG X, ZHOU B, OSBORN T, et al. Lung ultrasound surface wave elastography for assessing interstitial lung disease[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(5): 1346-1352. doi: 10.1109/TBME.2018.2872907
    [21] 崔春丽, 徐耀玲. 预测纳米纤维复合材料有效弹性性能的界面模型和界面相模型[J]. 应用数学和力学, 2022, 43(8): 877-887. doi: 10.21656/1000-0887.420231

    CUI Chunli, XU Yaoling. The interface model and the interphase model for predicting the effective elastic properties of nano-fiber composites[J]. Applied Mathematics and Mechanics, 2022, 43(8): 877-887. (in Chinese) doi: 10.21656/1000-0887.420231
    [22] 陈海玉, 徐福卫. 细观等效理论预测再生混凝土宏观力学参数[J]. 应用数学和力学, 2022, 43(7): 772-782. doi: 10.21656/1000-0887.420079

    CHEN Haiyu, XU Fuwei. Prediction of the macroscopic mechanics properties of recycled aggregate concrete based on the mesoscopic equivalence theory[J]. Applied Mathematics and Mechanics, 2022, 43(7): 772-782. (in Chinese) doi: 10.21656/1000-0887.420079
    [23] 李新平, 代翼飞, 郭运华, 等. 地下洞室锚固结构的力学特性与锚固机理研究[J]. 金属矿山, 2009(9): 19-23. doi: 10.3321/j.issn:1001-1250.2009.09.003

    LI Xinping, DAI Yifei, GUO Yunhua, et al. Study on the mechanical properties and anchoring mechanism in anchored structure of underground cavity[J]. Metal Mine, 2009(9): 19-23. (in Chinese) doi: 10.3321/j.issn:1001-1250.2009.09.003
    [24] LO M K, DAZZI A, MARCOTT C A, et al. Nanoscale chemical-mechanical characterization of nanoelectronic low-k dielectric/Cu interconnects[J]. ECS Journal of Solid State Science and Technology, 2015, 5(4): P3018-P3024.
    [25] TEWARY V K. Green's-function method for modeling surface acoustic wave dispersion in anisotropic material systems and determination of material parameters[J]. Wave Motion, 2004, 40(4): 399-412. doi: 10.1016/j.wavemoti.2004.02.007
    [26] XIAO X, SHAN X M, TAO Y, et al. Finite element model of surface acoustic wave method for mechanical characterization of patterned thin films of the ultra-large scaled integrated interconnect[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(2): 1602-1606. doi: 10.1166/jnn.2013.6092
    [27] 张小明, 高安儒, 王现辉, 等. 基于有限元特征频率法的功能梯度矩形截面杆导波频散特性研究[J]. 应用力学学报, 2021, 38(5): 2162-2167. doi: 10.11776/cjam.38.05.C101

    ZHANG Xiaoming, GAO Anru, WANG Xianhui, et al. Dispersion characteristics of guided waves in functionally graded rectangular bars based on a finite element characteristic frequency method[J]. Chinese Journal of Applied Mechanics, 2021, 38(5): 2162-2167. (in Chinese) doi: 10.11776/cjam.38.05.C101
    [28] ZHANG W, DAI G, WANG F, et al. Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures[J]. Acta Mechanica Sinica, 2007, 23(1): 77-89. doi: 10.1007/s10409-006-0045-2
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  179
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-09-04
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回