留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固定-铰接约束柔性管的涡激振动实验研究

朱红钧 刘文丽 高岳

朱红钧,刘文丽,高岳. 固定-铰接约束柔性管的涡激振动实验研究 [J]. 应用数学和力学,2023,44(2):141-151 doi: 10.21656/1000-0887.430320
引用本文: 朱红钧,刘文丽,高岳. 固定-铰接约束柔性管的涡激振动实验研究 [J]. 应用数学和力学,2023,44(2):141-151 doi: 10.21656/1000-0887.430320
ZHU Hongjun, LIU Wenli, GAO Yue. Experimental Study on the Vortex-Induced Vibration of Fixed-Hinged Flexible Risers[J]. Applied Mathematics and Mechanics, 2023, 44(2): 141-151. doi: 10.21656/1000-0887.430320
Citation: ZHU Hongjun, LIU Wenli, GAO Yue. Experimental Study on the Vortex-Induced Vibration of Fixed-Hinged Flexible Risers[J]. Applied Mathematics and Mechanics, 2023, 44(2): 141-151. doi: 10.21656/1000-0887.430320

固定-铰接约束柔性管的涡激振动实验研究

doi: 10.21656/1000-0887.430320
基金项目: 国家自然科学基金(面上项目)(51979238)
详细信息
    作者简介:

    朱红钧(1983—),男,教授,博士,博士生导师(通讯作者. E-mail:ticky863@126.com

  • 中图分类号: TE973

Experimental Study on the Vortex-Induced Vibration of Fixed-Hinged Flexible Risers

  • 摘要:

    海洋立管顶部常铰接于浮式平台下方,在海流激励下存在涡激振动响应,潜在疲劳失效的风险。该文采用非介入光学测试方法(高速摄像),对布置于循环水槽中顶部铰接-底部固定的悬链线柔性立管进行了振动响应研究。实验结果表明,立管三个方向被激发的振动模态阶数与主导振动频率均随约化速度的增加而逐渐升高,平面外的最大均方根振幅在模态过渡时有先降后升的变化,与振动模态分支相呼应。流体与立管之间能量传递在不同方向的分布存在一定差异,导致不同步的模态过渡现象。平面内振动存在与平面外振动主导频率吻合的频率,根据其是否主导对应管段的平面内振动,将其分为强耦合和弱耦合两种模式。

  • 图  1  实验布置示意图

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  1.  Schematic diagram of the experimental set-up

    图  2  实验后处理示意图

    Figure  2.  Schematic diagram of the image post-processing method

    图  3  柔性立管在三个方向上的前四种模态形状

    Figure  3.  The 1st 4 modal shapes of the flexible riser in the 3 directions

    图  4  立管振动的最大均方根振幅及对应位置主导频率随约化速度的变化趋势

    Figure  4.  Variations of the maximum root mean squared amplitude and the dominant frequency with the reduced velocity

    图  5  立管平面内振动从二阶向三阶过渡时代表性约化速度的均方根振幅和能量的时空变化

    Figure  5.  Spatio-temporal variations of the root-mean-square amplitude and energy transfer in the curvature plane at representative reduced velocities in the shift from the 2nd- to the 3rd-order vibration mode

    图  6  立管振动位移的时空演变和代表性标记圈的主导频率:(a) 平面外;(b) 平面内的X方向;(c) 平面内的Z方向

    Figure  6.  Spatio-temporal evolution of the vibration displacement and the dominant frequency at representative markers: (a) out-of-plane; (b) in-plane, X-direction; (c) in-plane, Z-direction

    图  7  立管振动的均方根振幅及主导频率在空间上的分布

    Figure  7.  Spatial variations of the root-mean-square amplitude and the dominant frequency

    图  8  立管振动包络图及振动频率

    Figure  8.  Instantaneous vibration profiles and associated frequencies

  • [1] VANDIVER J K, MA L X, RAO Z B. Revealing the effects of damping on the flow-induced vibration of flexible cylinders[J]. Journal of Sound and Vibration, 2018, 433: 29-54. doi: 10.1016/j.jsv.2018.07.009
    [2] BAO Y, ZHU H B, HUAN P, et al. Numerical prediction of vortex-induced vibration of flexible riser with thick strip method[J]. Journal of Fluids and Structures, 2019, 89: 166-173. doi: 10.1016/j.jfluidstructs.2019.02.010
    [3] GAO Y, ZOU L, ZONG Z, et al. Numerical prediction of vortex-induced vibrations of a long flexible cylinder in uniform and linear shear flows using a wake oscillator model[J]. Ocean Engineering, 2019, 171: 157-171. doi: 10.1016/j.oceaneng.2018.10.044
    [4] GAO Y, YANG B, ZOU L, et al. Vortex-induced vibrations of a long flexible cylinder in linear and exponential shear flows[J]. China Ocean Engineering, 2019, 33(1): 44-56. doi: 10.1007/s13344-019-0005-9
    [5] BAI X, LE Z B, QIN W. Effect of traveling waves on a long slender cylinder in vortex-induced vibration with two degrees of freedom[J]. Computers and Fluids, 2019, 193: 104270. doi: 10.1016/j.compfluid.2019.104270
    [6] KUMAR R P, NALLARARASU S. VIV response of risers with large aspect ratio and low rigidity using a numerical scheme based on wake oscillator model[J]. Applied Ocean Research, 2022, 118: 103011. doi: 10.1016/j.apor.2021.103011
    [7] GOU R Y, ZHANG X D, YANG W W, et al. Nonlinear dynamics of three-dimensional prediction model for a flexible riser under linearly sheared currents[J]. Arabian Journal for Science and Engineering, 2019, 44: 829-844. doi: 10.1007/s13369-018-3288-x
    [8] HAN X X, LIN W, QIN A, et al. Understanding vortex-induced vibration characteristics of a long fexible marine riser by a bidirectional fuid-structure coupling method[J]. Journal of Marine Science and Technology, 2020, 25: 620-639. doi: 10.1007/s00773-019-00663-y
    [9] PANG J H, ZHU B S, ZING Z. A numerical simulation model for the vortex induced vibration of flexible risers using dynamic stiffness matrices[J]. Ocean Engineering, 2019, 178: 306-320. doi: 10.1016/j.oceaneng.2019.03.007
    [10] GEDIKLI E D, CHELIDZE D, DAHL J M. Bending dominated flexible cylinder experiments reveal insights into modal interactions for flexible body vortex-induced vibrations[C]//Proceedings of the Twenty-Eighth (2018) International Ocean and Polar Engineering Conference. Sapporo, Japan, 2018.
    [11] KIM J D, JANG B S, YUN R H, et al. Improvement of the bending behavior of a flexible riser, part ii: hysteretic modeling of bending stiffness in global dynamic analysis[J]. Applied Ocean Research, 2020, 101: 102249. doi: 10.1016/j.apor.2020.102249
    [12] FAN D X, WANG Z C, TRIANTAFYLLOU M S, et al. Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow[J]. Journal of Fluid Mechanics, 2019, 881: 815-858. doi: 10.1017/jfm.2019.738
    [13] 高云, 邹丽, 宗智. 两端铰接的细长柔性圆柱体涡激振动响应特性数值研究[J]. 力学学报, 2018, 50(1): 9-20 doi: 10.6052/0459-1879-17-340

    GAO Yun, ZOU Li, ZONG Zhi. Numerical study of response performance of vortex-induced vibration on a flexible cylinder with pinned-pinned boundary condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 9-20.(in Chinese) doi: 10.6052/0459-1879-17-340
    [14] LIN K, WANG J S. Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method[J]. Ocean Engineering, 2019, 172: 468-486. doi: 10.1016/j.oceaneng.2018.12.006
    [15] LI Y L, GUO S X, CHEN W L. Analysis on multi-frequency vortex-induced vibration and mode competition of flexible deep-ocean riser in sheared fluid fields[J]. Journal of Petroleum Science and Engineering, 2018, 163: 378-386. doi: 10.1016/j.petrol.2018.01.008
    [16] CHEN Z S, RHEE S H. Effect of traveling wave on the vortex-induced vibration of a long flexible pipe[J]. Applied Ocean Research, 2019, 84: 122-132. doi: 10.1016/j.apor.2018.12.011
    [17] SEYED-AGHAZADEH B, EDRAKI M, MODARRES-SADEGHI Y. Effects of boundary conditions on vortex-induced vibration of a fully submerged flexible cylinder[J]. Experiments in Fluids, 2019, 60: 38. doi: 10.1007/s00348-019-2681-x
    [18] GAO Y, ZHANG Z Z, ZOU L, et al. Effect of boundary condition and aspect ratio on vortex-induced vibration response of a circular cylinder[J]. Ocean Engineering, 2019, 188: 106244. doi: 10.1016/j.oceaneng.2019.106244
    [19] 孙云卿, 吴志强, 章国齐, 等. 海洋立管双模态动力学分岔分析[J]. 应用数学和力学, 2020, 41(5): 480-490

    SUN Yunqing, WU Zhiqiang, ZHANG Guoqi, et al. Bifurcation analysis of dual-mode dynamics for marine risers[J]. Applied Mathematics and Mechanics, 2020, 41(5): 480-490.(in Chinese)
    [20] 严浩, 代胡亮, 王琳, 等. 气-液横向流动下悬臂柱体结构涡激振动机理研究[J]. 应用数学和力学, 2022, 43(5): 577-585

    YAN Hao, DAI Huliang, WANG Lin, et al. A study on the vortex-induced vibration mechanism of cantilever cylinders under gas-liquid cross flows[J]. Applied Mathematics and Mechanics, 2022, 43(5): 577-585.(in Chinese)
    [21] ZHU H J, LIN P Z, YAO J. An experimental investigation of vortex-induced vibration of a curved flexible pipe in shear flows[J]. Ocean Engineering, 2016, 121: 62-75. doi: 10.1016/j.oceaneng.2016.05.025
    [22] ZHU H J, LIN Z P. Numerical simulation of the vortex-induced vibration of a curved flexible riser in shear flow[J]. China Ocean Engineering, 2018, 32(3): 301-311. doi: 10.1007/s13344-018-0031-z
    [23] ZHU H J, LIN P Z, GAO Y. Vortex-induced vibration and mode transition of a curved flexible free-hanging cylinder in exponential shear flows[J]. Journal of Fluids and Structures, 2019, 84: 56-76. doi: 10.1016/j.jfluidstructs.2018.10.009
    [24] ZHU H J, HU J, GAO Y, et al. Spatial-temporal mode transition in vortex-induced vibration of catenary flexible riser[J]. Journal of Fluids and Structures, 2021, 102: 103234. doi: 10.1016/j.jfluidstructs.2021.103234
    [25] ZHAO L, TAN Z M, HOU Y C, et al. Experimental research on vortex-induced vibration of flexible catenary riser model[C]//ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain, 2018: OMAE2018-78363.
    [26] ZHU H J, GAO Y, ZHAO H L. Coupling vibration response of a curved flexible riser under the combination of internal slug flow and external shear current[J]. Journal of Fluids and Structures, 2019, 91: 102724. doi: 10.1016/j.jfluidstructs.2019.102724
    [27] HUERA-HUARTE F J, BEARMAN P W. Vortex and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with near wake interference[J]. Journal of Fluids and Structures, 2011, 27(5/6): 824-828.
    [28] HUERA-HUARTE F J, BANGASH Z A, GONZÁLEZ L M. Towing tank experiments on the vortex-induced vibrationsof low mass ratio long flexible cylinders[J]. Journal of Fluids and Structures, 2014, 48: 81-92. doi: 10.1016/j.jfluidstructs.2014.02.006
    [29] ASSI G R S, SRINIL N, FREIRE C M, et al. Experimental investigation of the flow-induced vibration of a curved cylinder in convex and concave configurations[J]. Journal of Fluids and Structures, 2014, 44: 52-66. doi: 10.1016/j.jfluidstructs.2013.10.011
    [30] SEYED-AGHAZADEH B, MODARRES-SADEGHI Y. Reconstructing the vortex-induced-vibration response of flexible cylinders using limited localized measurement points[J]. Journal of Fluids and Structures, 2016, 65: 433-446. doi: 10.1016/j.jfluidstructs.2016.06.006
    [31] XU W H, LUAN Y S, HAN Q H, et al. The effect of yaw angle on VIV suppression for an inclined flexible cylinder fitted with helical strakes[J]. Applied Ocean Research, 2017, 67: 263-276. doi: 10.1016/j.apor.2017.07.014
    [32] ZHU H J, ZHAO H L, XIE Y P, et al. Experimental investigation on the alteration of natural frequency of a flexible pipe adjacent to a bottom plane with the consideration of pipe-plane impact[J]. Physics of Fluids, 2022, 34(4): 047106. doi: 10.1063/5.0085446
    [33] 陈东阳, ABBAS L K, 王国平, 等. 流场环境对柔性立管湿模态的影响[J]. 哈尔滨工程大学学报, 2017, 38(10): 1587-1594 doi: 10.11990/jheu.201605083

    CHEN Dongyang, ABBAS L K, WANG Guoping, et al. Influence of flow field environment on wet modal vibration of flexible riser[J]. Journal of Harbin Engineering University, 2017, 38(10): 1587-1594.(in Chinese) doi: 10.11990/jheu.201605083
    [34] 姜峰, 郑运虎, 梁瑞, 等. 海洋立管湿模态振动分析[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 159-166

    JIANG Feng, ZHENG Yunhu, LIANG Rui, et al. An analysis of the wet modal vibration of marine riser[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5): 159-166.(in Chinese)
    [35] KHALAK A, WILLIAMSON C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5): 455-472. doi: 10.1006/jfls.1996.0031
    [36] FENG C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. Master Thesis. Vancouver, Canada: University of British Columbia, 1968.
  • 加载中
图(8)
计量
  • 文章访问数:  607
  • HTML全文浏览量:  258
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-01-03
  • 网络出版日期:  2023-02-03
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回