留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏Bayes学习算法的无约束结构荷载重构方法

陈先智 周新元 曾耀祥 张亚辉

陈先智, 周新元, 曾耀祥, 张亚辉. 基于稀疏Bayes学习算法的无约束结构荷载重构方法[J]. 应用数学和力学, 2023, 44(8): 931-943. doi: 10.21656/1000-0887.430336
引用本文: 陈先智, 周新元, 曾耀祥, 张亚辉. 基于稀疏Bayes学习算法的无约束结构荷载重构方法[J]. 应用数学和力学, 2023, 44(8): 931-943. doi: 10.21656/1000-0887.430336
CHEN Xianzhi, ZHOU Xinyuan, ZENG Yaoxiang, ZHANG Yahui. An Unconstrained Structural Dynamic Load Reconstruction Method Based on the Sparse Bayesian Learning Algorithm[J]. Applied Mathematics and Mechanics, 2023, 44(8): 931-943. doi: 10.21656/1000-0887.430336
Citation: CHEN Xianzhi, ZHOU Xinyuan, ZENG Yaoxiang, ZHANG Yahui. An Unconstrained Structural Dynamic Load Reconstruction Method Based on the Sparse Bayesian Learning Algorithm[J]. Applied Mathematics and Mechanics, 2023, 44(8): 931-943. doi: 10.21656/1000-0887.430336

基于稀疏Bayes学习算法的无约束结构荷载重构方法

doi: 10.21656/1000-0887.430336
我刊编委张亚辉来稿
基金项目: 

国家自然科学基金项目 12032008

详细信息
    作者简介:

    陈先智(1996—),男,硕士生(E-mail: xianzhichen@mail.dlut.edu.cn)

    周新元(1995—),男,博士生(E-mail: zxy9501@mail.dlut.edu.cn)

    曾耀祥(1987—),男,高级工程师(E-mail: zengyaoxiang01@163.com)

    通讯作者:

    张亚辉(1972—),男,教授,博士生导师(通讯作者. E-mail: zhangyh@dlut.edu.cn)

  • 中图分类号: O32

An Unconstrained Structural Dynamic Load Reconstruction Method Based on the Sparse Bayesian Learning Algorithm

  • 摘要: 为快速准确重构含有未知初始条件的无约束结构外激励,提出了一种基于稀疏Bayes学习算法的荷载重构方法.结合函数拟合的思想建立控制方程,以噪声服从Gauss分布为先验,在Bayes模型中使用快速算法,稀疏重构未知荷载.为合理表达分段拟合中的初始条件,提出了改进的分段拟合手段,以上一分段末状态响应作为可能初始条件,并辅以低阶振型作为初始位移和初始速度的补充.算例以简化运载火箭模型为研究对象,考虑不同等级噪声和不同初始条件表达形式的影响,验证方法的精度和效率.
    1)  我刊编委张亚辉来稿
  • 图  1  分段重叠拟合

    Figure  1.  Piecewise overlap fitting

    图  2  所提方法荷载重构流程图

    Figure  2.  The flowchart of the proposed method for load reconstruction

    图  3  初始位移

    Figure  3.  Initial displacements

    图  4  初始速度

    Figure  4.  Initial velocities

    图  5  本文所提方法不同噪声水平下荷载重构结果

    Figure  5.  Reconstruction results with the proposed method under different noise levels

    图  6  15%噪声水平下不同方法的荷载重构结果

    Figure  6.  Comparison of reconstruction results between different methods with a 15% noise level

    图  7  仅使用低阶振型表达初始条件

    Figure  7.  Only low-order modes used to express the initial conditions

    图  8  改进分段拟合

    Figure  8.  Modified piecewise fitting time histories

    图  9  衔接点放大图

    Figure  9.  The articulation point enlargement

    表  1  重构精度与计算时间

    Table  1.   Reconstruction accuracies and computation times

    proposed ref.[24]
    noise levels 5% 10% 15% 5% 10% 15%
    f1 1.87% 3.55% 10.08% 3.17% 10.71% 10.98%
    f2 0.37% 0.67% 1.82% 0.01% 0.20% 0.35%
    f3 0.99% 1.67% 2.82% 0.65% 6.34% 9.39%
    computing time 0.68 s 617.02 s
    下载: 导出CSV

    表  2  3种重构方式识别结果对比

    Table  2.   Comparison of identification results of 3 reconstruction methods

    force relative error δ/% computing time t/s
    only low-order modes expressed
    initial condition
    f1 58.48 622.91
    f2 139.66
    f3 105.32
    modified piecewise fitting f1 2.56 619.23
    f2 4.77
    f3 6.03
    no segmentation f1 11.58 1 203.26
    f2 23.57
    f3 16.72
    下载: 导出CSV
  • [1] 朱华平. 不适定问题的正则化理论及其应用[D]. 硕士学位论文. 武汉: 武汉理工大学, 2007.

    ZHU Huaping. The regularization theory for ill-posed problems and application[D]. Master Thesis. Wuhan: Wuhan University of Technology, 2007. (in Chinese)
    [2] 柏恩鹏, 熊向团. 一种新的正则化方法求解热传导方程的侧边值问题[J]. 应用数学和力学, 2021, 42 (5): 541-550. doi: 10.21656/1000-0887.410290

    BAI Enpeng, XIONG Xiangtuan. A new regularization method for solving sideways heat equations[J]. Applied Mathematics and Mechanics, 2021, 42 (5): 541-550. (in Chinese) doi: 10.21656/1000-0887.410290
    [3] 柳冕, 程浩, 石成鑫. 一类非线性时间分数阶扩散方程反问题的变分型正则化[J]. 应用数学和力学, 2022, 43 (3): 341-352. doi: 10.21656/1000-0887.420168

    LIU Mian, CHENG Hao, SHI Chengxin. Variational regularization of the inverse problem of a class of nonlinear time-fractional diffusion equations[J]. Applied Mathematics and Mechanics, 2022, 43 (3): 341-352. (in Chinese) doi: 10.21656/1000-0887.420168
    [4] 彭凡, 马庆镇, 肖健, 等. 自由运行结构动态载荷识别的格林函数法[J]. 动力学与控制学报, 2016, 14 (1): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201601012.htm

    PENG Fan, MA Qingzhen, XIAO Jian, et al. Green kernel function approach of load identification for free structures with overall translation[J]. Journal of Dynamics and Control, 2016, 14 (1): 75-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201601012.htm
    [5] 周玙, 刘莉, 周思达, 等. 基于应变模态参数的结构瞬态载荷识别方法研究[J]. 振动与冲击, 2019, 38 (6): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906030.htm

    ZHOU Yu, LIU Li, ZHOU Sida, et al. Transient load identification of structural dynamic systems based on strain modal parameters[J]. Journal of Vibration and Shock, 2019, 38 (6): 199-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906030.htm
    [6] LIU R, HOU Z, WU P, et al. Dynamic load identification for a power battery pack based on a combined regularization algorithm[J]. Journal of Sound and Vibration, 2022, 529: 116928. doi: 10.1016/j.jsv.2022.116928
    [7] QIAO B, CHEN X, XUE X, et al. The application of cubic B-spline collocation method in impact force identification[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 413-427. doi: 10.1016/j.ymssp.2015.04.009
    [8] 张超东, 黎剑安. 基于增秩Kalman滤波的动态荷载识别和结构响应重构[J]. 应用数学和力学, 2021, 42 (7): 665-674. doi: 10.21656/1000-0887.410252

    ZHANG Chaodong, LI Jian'an. Dynamic load identification and structural response reconstruction based on the augmented Kalman filter[J]. Applied Mathematics and Mechanics, 2021, 42 (7): 665-674. (in Chinese) doi: 10.21656/1000-0887.410252
    [9] 张梓航. 基于字典学习的移动荷载识别[D]. 硕士学位论文. 合肥: 合肥工业大学, 2020.

    ZHANG Zihang. Moving load identification based on dictionary learning[D]. Master Thesis. Hefei: Hefei University of Technology, 2020. (in Chinese)
    [10] QIAO B, ZHANG X, WANG C, et al. Sparse regularization for force identification using dictionaries[J]. Journal of Sound and Vibration, 2016, 368: 71-86.
    [11] ZHANG Z, HE W, REN W. Moving force identification based on learning dictionary with double sparsity[J]. Mechanical Systems and Signal Processing, 2022, 170: 108811.
    [12] LIU J, LI K. Sparse identification of time-space coupled distributed dynamic load[J]. Mechanical Systems and Signal Processing, 2021, 148: 107177.
    [13] SAMAGASSI S, KHAMLICHI A, DRIOUACH A, et al. Reconstruction of multiple impact forces by wavelet relevance vector machine approach[J]. Journal of Sound and Vibration, 2015, 359: 56-67.
    [14] YAN G, SUN H. A non-negative Bayesian learning method for impact force reconstruction[J]. Journal of Sound and Vibration, 2019, 457: 354-367.
    [15] PRAWIN J, RAMA MOHAN RAO A. An online input force time history reconstruction algorithm using dynamic principal component analysis[J]. Mechanical Systems and Signal Processing, 2018, 99: 516-533.
    [16] 张开华. 运载火箭时域分段拟合动态载荷识别研究[D]. 硕士学位论文. 大连: 大连理工大学, 2021.

    ZHANG Kaihua. Dynamic load identification of launch vehicles by time-domain piecewise fitting[D]. Master Thesis. Dalian: Dalian University of Technology, 2021. (in Chinese)
    [17] PAN C, YU L. Identification of external forces via truncated response sparse decomposition under unknown initial conditions[J]. Advances in Structural Engineering, 2019, 22 (15): 3161-3175.
    [18] PAN C, YE X, ZHOU J, et al. Matrix regularization-based method for large-scale inverse problem of force identification[J]. Mechanical Systems and Signal Processing, 2020, 140: 106698.
    [19] PAN C, DENG X, HUANG Z. Parallel computing-oriented method for long-time duration problem of force identification[J]. Engineering With Computers, 2022, 38 (2): 919-937.
    [20] TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1 (3): 211-244.
    [21] TIPPING M E, FAUL A C. Fast marginal likelihood maximisation for sparse Bayesian models[C]//Ninth International Workshop on Artificial Intelligence and Statistics. Florida, USA, 2003: 276-283.
    [22] LAW S S, ZHU X Q. Moving Loads-Dynamic Analysis and Identification Techniques[M]. London: CRC Press, 2011.
    [23] 朱斯岩, 朱礼文. 运载火箭动态载荷识别研究[J]. 振动工程学报, 2008, 21 (2): 135-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200802007.htm

    ZHU Siyan, ZHU Liwen. Dynamic load identification on launch vehicle[J]. Journal of Vibration Engineering, 2008, 21 (2): 135-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200802007.htm
    [24] PAN C, YU L, LIU H, et al. Moving force identification based on redundant concatenated dictionary and weighted l1-norm regularization[J]. Mechanical Systems and Signal Processing, 2018, 98: 32-49.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  126
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2022-11-15
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回