留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能梯度压电空心圆柱中分数阶热弹导波的频散和衰减特性

禹建功 王开 任小强 王现辉 张博

禹建功, 王开, 任小强, 王现辉, 张博. 功能梯度压电空心圆柱中分数阶热弹导波的频散和衰减特性[J]. 应用数学和力学, 2023, 44(11): 1325-1340. doi: 10.21656/1000-0887.440144
引用本文: 禹建功, 王开, 任小强, 王现辉, 张博. 功能梯度压电空心圆柱中分数阶热弹导波的频散和衰减特性[J]. 应用数学和力学, 2023, 44(11): 1325-1340. doi: 10.21656/1000-0887.440144
YU Jiangong, WANG Kai, REN Xiaoqiang, WANG Xianhui, ZHANG Bo. Dispersion and Attenuation Characteristics of Fractional-Order Thermoelastic Guided Waves in Functionally Graded Piezoelectric Hollow Cylinders[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1325-1340. doi: 10.21656/1000-0887.440144
Citation: YU Jiangong, WANG Kai, REN Xiaoqiang, WANG Xianhui, ZHANG Bo. Dispersion and Attenuation Characteristics of Fractional-Order Thermoelastic Guided Waves in Functionally Graded Piezoelectric Hollow Cylinders[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1325-1340. doi: 10.21656/1000-0887.440144

功能梯度压电空心圆柱中分数阶热弹导波的频散和衰减特性

doi: 10.21656/1000-0887.440144
基金项目: 

国家自然科学基金项目 12102131

河南省高校科技创新团队基金项目 23IRTSTHN016

中国博士后科学基金 2021M701102

详细信息
    作者简介:

    禹建功(1975—),男,教授,博士,博士生导师(E-mail: jiangongyu@126.com)

    通讯作者:

    王现辉(1985—),男,讲师,博士,硕士生导师(通讯作者. E-mail: wxhhpu@163.com)

  • 中图分类号: O348

Dispersion and Attenuation Characteristics of Fractional-Order Thermoelastic Guided Waves in Functionally Graded Piezoelectric Hollow Cylinders

  • 摘要: 基于分数阶热电弹性理论和Legendre多项式方法,构建了功能梯度空心圆柱中导波传播的数学模型. 讨论了分数阶次、压电效应、径厚比等对导波传播,特别是对其衰减的影响规律. 数值结果表明,压电效应对衰减的影响主要集中在截止频率和突变频率附近,并使得突变频率发生前移;分数阶对热波模态相速度和衰减的影响较大,且热波相速度存在模态交叉,在交叉频率点附近分数阶对相速度的影响相反;热波衰减随着分数阶增大而逐渐减小;第一阶纵向模态衰减受到了压电效应的抑制,其余模态衰减都显著增大,并且电开路受到的影响要比电短路状态大.
  • 图  1  结果比较

    Figure  1.  Comparison of the present results with references

    图  2  色散曲线的实部收敛分析(N=3)

    Figure  2.  The real part convergence analysis of the dispersion curve (N=3)

    图  3  色散曲线的虚部收敛分析(N=3)

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The imaginary part convergence analysis of the dispersion curve (N=3)

    图  4  轴对称模态中第一热波的色散曲线(N=0)

    Figure  4.  Dispersion curves of the axisymmetric mode thermal wave (N=0)

    图  5  轴对称模态中准弹性波的相速度曲线(N=0)

    Figure  5.  Phase velocity curves of the quasi-elastic wave in the axisymmetric mode (N=0)

    图  6  轴对称模态中准弹性波的衰减曲线(N=0)

    Figure  6.  Attenuation curves of the quasi-elastic wave in the axisymmetric mode (N=0)

    图  7  非轴对称模态中准弹性波的相速度曲线(N=3)

    Figure  7.  Phase velocity curves of the quasi-elastic wave in the non-axisymmetric mode (N=3)

    图  8  非轴对称模态中准弹性波的衰减曲线(N=3)

    Figure  8.  Attenuation curves of the quasi-elastic wave in the non-axisymmetric mode (N=3)

    图  9  不同α下第一热波的色散曲线

    Figure  9.  Dispersion curves of the 1st thermal wave with different α values

    图  10  不同α下准弹性波的相速度曲线

    Figure  10.  Phase velocity curves of the quasi-elastic wave in the FGPM hollow cylinder with different α values

    图  11  不同α下准弹性波的衰减曲线

    Figure  11.  Attenuation curves of the quasi-elastic wave with different α values

    图  12  不同μ下第一热波的色散曲线

    Figure  12.  Dispersion curves of the 1st thermal wave with different μ values

    图  13  不同μ下准弹性波的相速度曲线

    Figure  13.  Phase velocity curves of the quasi-elastic wave with different μ values

    图  14  不同μ下准弹性波的衰减曲线

    Figure  14.  Attenuation curves of the quasi-elastic wave with different μ values

    图  15  不同梯度下第一热波的色散曲线

    Figure  15.  Dispersion curves of the 1st thermal wave with different gradients

    图  16  不同梯度下准弹性波的相速度曲线

    Figure  16.  Phase velocity curves of the quasi-elastic wave with different gradients

    图  17  不同梯度下准弹性波的衰减曲线

    Figure  17.  Attenuation curves of the quasi-elastic wave with different gradients

    表  1  材料参数(PZT-4)[22]

    Table  1.   Material properties(PZT-4)[22]

    property C11/(N·m-2) C12/(N·m-2) C13/(N·m-2) C22/(N·m-2) C23/(N·m-2) C33/(N·m-2)
    PZT-4 1.39×1011 7.78×1010 7.43×1010 1.39×1011 7.43×1010 1.15×1011
    property C44/(N·m-2) C55/(N·m-2) C66/(N·m-2) e15/(C·m-2) e24/(C·m-2) e31/(C·m-2)
    PZT-4 2.56×1010 2.56×1010 3.06×1010 12.7 12.7 -5.2
    property e32/(C·m-2) e33/(C·m-2) ε11/ (C2·N-1·m-2) ε22/(C2·N-1·m-2) ε33/(C2·N-1·m-2) ρ/(kg·m-3)
    PZT-4 -5.2 15.1 6.46×10-9 6.46×10-9 5.62×10-9 7.5×103
    下载: 导出CSV

    表  2  Cobalt/steel的材料参数[23]

    Table  2.   Material properties of cobalt/steel[23]

    material C11/(N·m-2) C12/(N·m-2) C13/(N·m-2) C33/(N·m-2) C44/(N·m-2) C66/(N·m-2)
    steel 2.692 3×1011 1.153 8×1011 1.153 8×1011 2.692 3×1011 7.692×1010 7.692×1010
    cobalt 3.071×1011 1.65×1011 1.027×1011 3.581×1011 7.55×1010 7.105×1010
    material ρ/(kg·m-3) Ce/(J·kg-1·K-1) β1/(N·K-1·m-2) β3/(N·K-1·m-2) K1/(W·m-1·K-1) K3/(W·m-1·K-1)
    steel 7.85×103 477 6.0×106 6.0×106 52 52
    cobalt 8.836×103 427 7.04×106 6.9×106 69 69
    下载: 导出CSV

    表  3  材料参数[24]

    Table  3.   Material properties[24]

    property CdSe PZT-5A property CdSe PZT-5A
    C11/(N·m-2) 7.41×1010 1.39×1011 ε11/(C2·N-1·m-2) 8.26×10-11 6.00×10-9
    C12/(N·m-2) 4.52×1010 7.78×1010 ε22/(C2·N-1·m-2) 8.26×10-11 6.00×10-9
    C22/(N·m-2) 7.41×1010 1.39×1011 ε33/(C2·N-1·m-2) 9.03×10-11 5.47×10-9
    C13/(N·m-2) 3.93×1010 7.54×1010 K1/(W·m-1·K-1) 9 1.5
    C23/(N·m-2) 3.93×1010 7.54×1010 K2/(W·m-1·K-1) 9 1.5
    C33/(N·m-2) 8.36×1010 1.13×1011 K3/(W·m-1·K-1) 9 1.5
    C44/(N·m-2) 1.32×1010 2.56×1010 β1/(N·K-1·m-2) 6.21×105 1.52×106
    C55/(N·m-2) 1.32×1010 2.56×1010 β2/(N·K-1·m-2) 6.21×105 1.52×106
    C66/(N·m-2) 1.445×1010 3.06×1010 β3/(N·K-1·m-2) 5.51×105 1.53×106
    e31/(C·m-2) -0.16 -6.98 P1/(C·K-1·m-2) 0 0
    e32/(C·m-2) -0.16 -6.98 P2/(C·K-1·m-2) 0 0
    e33/(C·m-2) 0.347 13.8 P3/(C·K-1·m-2) -2.94×10-6 -4.52×10-4
    e15/(C·m-2) -0.138 13.4 Ce/(J·kg-1·K-1) 260 420
    e24/(C·m-2) -0.138 13.4 ρ/(kg·m-3) 5.504×103 7.75×103
    下载: 导出CSV
  • [1] 沈璐璐, 蔡方圆, 杨博. 功能梯度压电板柱面弯曲的弹性力学解[J]. 应用数学和力学, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224

    SHEN Lulu, CAI Fangyuan, YANG Bo. Elasticity solutions for cylindrical bending of functionally graded piezoelectric material plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. (in Chinese) doi: 10.21656/1000-0887.430224
    [2] LORD H W, SHULMAN Y. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309. doi: 10.1016/0022-5096(67)90024-5
    [3] GREEN A E, LINDSAY K. Thermoelasticity[J]. Journal of elasticity, 1972, 2(1): 1-7. doi: 10.1007/BF00045689
    [4] GREEN A, NAGHDI P. On undamped heat waves in an elastic solid[J]. Journal of Thermal Stresses, 1992, 15(2): 253-264. doi: 10.1080/01495739208946136
    [5] 段晓宇, 马永斌. 分数阶热弹理论下重力场对二维纤维增强介质的影响[J]. 应用数学和力学, 2021, 42(5): 452-459. doi: 10.21656/1000-0887.410125

    DUAN Xiaoyu, MA Yongbin. Effects of the gravity field on 2D fiber-reinforced media under the fractional order theory of thermoelasticity[J]. Applied Mathematics and Mechanics, 2021, 42(5): 452-459. (in Chinese) doi: 10.21656/1000-0887.410125
    [6] 刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090

    LIU Xu, YAO Linquan. Vibration analysis of rotating functionally gradient nano annular plates in thermal environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236. (in Chinese) doi: 10.21656/1000-0887.410090
    [7] ABD-ALLA A, ABO-DAHAB S, AHMED S, et al. Rayleigh surface wave propagation in an orthotropic rotating magneto-thermoelastic medium subjected to gravity and initial stress[J]. Mechanics of Advanced Materials and Structures, 2020, 27(16): 1400-1411. doi: 10.1080/15376494.2018.1512019
    [8] SHARMA J N, PAL M. Propagation of Lamb waves in a transversely isotropic piezothermoelastic plate[J]. Journal of Sound & Vibration, 2004, 270(4/5): 587-610.
    [9] 王现辉, 李方琳, 刘宇建, 等. 板中热弹波传播: 一种改进的勒让德多项式方法[J]. 力学学报, 2020, 52(5): 1277-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005007.htm

    WANG Xianhui, LI Fanglin, LIU Yujian, et al. Thermoelastic wave propagation in plates: an improved Legendre polynomial approach[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1277-1285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005007.htm
    [10] PENG W, CHEN L, HE T. Nonlocal thermoelastic analysis of a functionally graded material microbeam[J]. Applied Mathematics and Mechanics, 2021, 42(6): 855-870. doi: 10.1007/s10483-021-2742-9
    [11] HEYDARPOUR Y, MALEKZADEH P, DIMITRI R, et al. Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers[J]. Applied Sciences, 2020, 10(4): 1397. doi: 10.3390/app10041397
    [12] KHOSHGOFTAR M, ARANI A G, AREFI M. Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material[J]. Smart Materials and Structures, 2009, 18(11): 115007. doi: 10.1088/0964-1726/18/11/115007
    [13] DAI H L, JIANG H J. Analytical study for electromagnetothermoelastic behavior of a functionally graded piezoelectric solid cylinder[J]. Mechanics of Advanced Materials and Structures, 2013, 20(10): 811-818. doi: 10.1080/15376494.2012.676715
    [14] OOTAO Y, AKAI T, TANIGAWA Y. Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow cylinder[J]. Journal of Thermal Stresses, 2008, 31(10): 935-955. doi: 10.1080/01495730802250508
    [15] AREFI M, RAHIMI G. General formulation for the thermoelastic analysis of an arbitrary structure made of functionally graded piezoelectric materials, based on the energy method[J]. Mechanical Engineering, 2011, 62: 221-235.
    [16] EL-NAGGAR A, KISHKA Z, ABD-ALLA A, et al. On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity[J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(6): 1408-1417. doi: 10.1166/jctn.2013.2862
    [17] ZHU J, CHEN W, YE G, et al. Waves in fluid-filled functionally graded piezoelectric hollow cylinders: a restudy based on the reverberation-ray matrix formulation[J]. Wave Motion, 2013, 50(3): 415-427. doi: 10.1016/j.wavemoti.2012.10.006
    [18] LIU C, YU J, XU W, et al. Theoretical study of elastic wave propagation through a functionally graded micro-structured plate base on the modified couple-stress theory[J]. Meccanica, 2020, 55: 1153-1167. doi: 10.1007/s11012-020-01156-8
    [19] OTHMANI C, ZHANG H, LV C, et al. Orthogonal polynomial methods for modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites: a review[J]. Composite Structures, 2022, 286: 115245.
    [20] ZHENG M, MA H, LYU Y, et al. Derivation of circumferential guided waves equations for a multilayered laminate composite hollow cylinder by state-vector and Legendre polynomial hybrid formalism[J]. Composite Structures, 2021, 255: 112950.
    [21] CAO X, JIN F, JEON I. Calculation of propagation properties of Lamb waves in a functionally graded material (FGM) plate by power series technique[J]. NDT & E International, 2011, 44(1): 84-92.
    [22] SHATALOV M Y, EVERY A G, YENWONG-FAI A S. Analysis of non-axisymmetric wave propagation in a homogeneous piezoelectric solid circular cylinder of transversely isotropic material[J]. International Journal of Solids & Structures, 2010, 46(3/4): 837-850.
    [23] WANG X H, LI F L, ZHANG B, et al. Wave propagation in thermoelastic inhomogeneous hollow cylinders by analytical integration orthogonal polynomial approach[J]. Applied Mathematical Modelling, 2021, 99: 57-80.
    [24] GUHA S, SINGH A K. Plane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces[J]. European Journal of Mechanics A: Solids, 2021, 88: 104242.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  126
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-08-21
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回