留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输液直管道流-固耦合振动响应计算方法与应用

田瑞 常亮 韩涛 聂小华

田瑞, 常亮, 韩涛, 聂小华. 输液直管道流-固耦合振动响应计算方法与应用[J]. 应用数学和力学, 2024, 45(12): 1494-1505. doi: 10.21656/1000-0887.440291
引用本文: 田瑞, 常亮, 韩涛, 聂小华. 输液直管道流-固耦合振动响应计算方法与应用[J]. 应用数学和力学, 2024, 45(12): 1494-1505. doi: 10.21656/1000-0887.440291
TIAN Rui, CHANG Liang, HAN Tao, NIE Xiaohua. The Calculation Method and Application of Fluid-Solid Coupling Vibration Responses of Straight Infusion Pipeline[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1494-1505. doi: 10.21656/1000-0887.440291
Citation: TIAN Rui, CHANG Liang, HAN Tao, NIE Xiaohua. The Calculation Method and Application of Fluid-Solid Coupling Vibration Responses of Straight Infusion Pipeline[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1494-1505. doi: 10.21656/1000-0887.440291

输液直管道流-固耦合振动响应计算方法与应用

doi: 10.21656/1000-0887.440291
详细信息
    作者简介:

    田瑞(1993—),男,工程师,硕士(通讯作者. E-mail: 458519989@qq.com)

  • 中图分类号: V214

The Calculation Method and Application of Fluid-Solid Coupling Vibration Responses of Straight Infusion Pipeline

  • 摘要: 输液管道系统中存在液体压力脉动和管道结构的高度非线性耦合效应,在外激励作用下将产生剧烈的耦合振动现象,严重时会导致输液管道及连接结构失效.针对输液管道流-固耦合振动响应解析方法缺乏,研究了基于微分变换法(DTM)求解含复杂支承的输液管道系统动力学特性及振动响应理论,基于Bernoulli-Euler梁理论建立了跨中含复杂弹性支承的输液直管道流-固耦合振动微分方程,详细推导了基于DTM计算简支、含附加弹性支承输液直管道系统固有频率、位移响应及支承约束反力的表达式,研究了输液管道内压强、流速及附加支承刚度和位置对管道系统固有频率、支承约束反力的影响,并基于结构有限元分析方法验证了DTM的计算精度.研究表明:采用DTM计算含复杂支承输液管道系统流-固耦合振动特性及响应的精度高、适用性强,尤其在复杂边界以及跨中含有附加支承管道系统振动响应计算方面具有明显的优势,基于DTM可以便捷计算流固耦合管道系统强迫振动中的力学响应,为管道及其连接结构的设计提供理论依据.
  • 图  1  简支输液管道系统简化模型

    Figure  1.  The simplified model for the simple support infusion pipeline system

    图  2  附加单个弹性支承简支输液管道系统简化模型

    Figure  2.  A simple support infusion pipeline system model with an additional elastic support

    图  3  流速和压强对输液管道系统固有频率的影响

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Effects of the flow rate and the pressure on natural frequencies of the infusion piping system

    图  4  不同外激励工况下流速和压强对约束反力的影响

    Figure  4.  Influences of the flow rate and the pressure on restrained reactions under different external excitation conditions

    表  1  DTM中基本数学运算[19]

    Table  1.   Basic mathematical operations in the DTM[19]

    original function conversion function
    w(x)=y(xz(x) W(k)=Y(kZ(k)
    w(x)=Ay(x) W(k)=AY(k)
    $w(x)=\frac{\mathrm{d} y(x)}{\mathrm{d} x} $ W(k)=(k+1)Y(k+1)
    $w(x)=\frac{\mathrm{d}^{n} y(x)}{\mathrm{d} x^{n}} $ W(k)=(k+1)(k+2)…(k+n)Y(k+n)
    w(x)=y(x)z(x) $ W(k)=\sum\limits_{l=0}^{k} Y(l) Z(k-l)$
    w(x)=xm $ W(k)=\delta(k-m)= \begin{cases}1, & k=m \\ 0, & k \neq m\end{cases}$
    下载: 导出CSV

    表  2  DTM中典型边界条件的转换[20]

    Table  2.   Typical boundary conditions and transition conditions in DTM[20]

    boundary type boundary condition conversion condition
    η(0)=η″(0)=0
    η(1)=η″(1)=0
    W(0)=W(2)=0
    $\sum\limits_{k=0}^{N} W(k)=\sum\limits_{k=0}^{N} k(k-1) W(k)=0 $
    η(0)=η′(0)=0
    η″(1)=η'''(1)=0
    W(0)=W(1)=0
    $ \sum\limits_{k=0}^{N} k(k-1) W(k)=\sum\limits_{k=0}^{N} k(k-1)(k-2) W(k)=0$
    η(0)=η′(0)=0
    η(1)=η″(1)==0
    W(0)=W(1)=0
    $\sum\limits_{k=0}^{N} W(k)=\sum\limits_{k=0}^{N} k(k-1) W(k)=0 $
    η(0)=η′(0)=0
    η(1)=η′(1)=0
    W(0)=W(1)=0
    $ \sum\limits_{k=0}^{N} W(k)=\sum\limits_{k=0}^{N} k W(k)=0$
    下载: 导出CSV

    表  3  简支输液管道系统固有频率计算结果

    Table  3.   Calculation results of natural frequencies of the simple support infusion pipeline system

    flow condition natural frequency fi/Hz error δ/%
    P/MPa Vf/(m/s) i FEM DTM
    0 0 1 86.772 86.772 0
    2 347.134 346.549 0.17
    20 10 1 69.0 69.0 0
    2 330.768 330.189 0.18
    30 20 1 57.80 57.80 0
    2 322.1 321.491 0.19
    下载: 导出CSV

    表  4  输液管道系统简支端约束反力

    Table  4.   Constraining reactions at the simple support end of the infusion pipeline system

    excitation frequency ωf flow condition constrained reaction force R1/N error δ/%
    P/MPa Vf/(m/s) FEM DTM
    0.5ω1 0 0 17.018 17.166 0.87
    20 10 30.914 31.109 0.63
    30 20 58.257 58.852 1
    ω1 0 0 2 526.348 2 527.190 0.03
    20 10 27.528 27.692 0.6
    30 20 17.129 17.343 0.5
    1.5ω1 0 0 6.339 6.242 1.5
    20 10 4.497 4.187 6.7
    30 20 3.808 3.518 7.6
    下载: 导出CSV

    表  5  等支承约束反力设计

    Table  5.   The equal support constrained reaction force design

    flow condition ωf optimal addition stiffness k/(kN/m) f1/Hz constrained reaction force Rj/N error δ/%
    P/MPa Vf/(m/s) j DTM FEM
    20 10 1 12.407 12.112 2.38
    0.5ω1 416.0 110.942 k 12.40 12.435 0.28
    2 12.407 12.112 2.38
    1 30.569 30.410 0.52
    ω1 347.1 105.260 k 30.540 30.813 0.89
    2 30.569 30.410 0.52
    1 9.224 9.396 1.86
    1.5ω1 231.8 94.920 k 9.215 9.181 0.37
    2 9.224 9.396 1.86
    30 20 1 14.293 14.0 2.05
    0.5ω1 402.3 103.137 k 14.279 14.330 0.36
    2 14.293 14.0 2.05
    1 55.774 55.925 0.27
    ω1 332.6 96.927 k 55.722 56.521 1.43
    2 55.774 55.925 0.27
    1 7.144 7.276 1.84
    1.5ω1 217.5 85.606 k 7.138 7.126 0.17
    2 7.144 7.276 1.84
    下载: 导出CSV
  • [1] LIANG Feng, QIAN Yu, CHEN Yao, et al. Nonlinear forced vibration of spinning pipes conveying fluid under lateral harmonic excitation[J]. International Journal of Applied Mechanics, 2021, 13(9): 2150098. doi: 10.1142/S1758825121500988
    [2] 张凯凯, 谭霞, 丁虎, 等. 超临界输流管道3∶1内共振下参激振动响应[J]. 应用数学和力学, 2018, 39(11): 1227-1235. doi: 10.21656/1000-0887.390121

    ZHANG Kaikai, TAN Xia, DING Hu, et al. Parametric vibration responses of supercritical fluid-conveying pipes in 3∶1 internal resonance[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1227-1235. (in Chinese) doi: 10.21656/1000-0887.390121
    [3] LI Qian, LIU Wei, LU Kuan, et al. Nonlinear parametric vibration of a fluid-conveying pipe flexibly restrained at the ends[J]. Acta Mechanica Solida Sinica, 2020, 33(3): 327-346. doi: 10.1007/s10338-019-00147-x
    [4] GAO Xumin, GAO Peixin, MA Hui, et al. Vibration characteristics analysis of fluid-conveying pipes concurrently subjected to base excitation and pulsation excitation[J]. Mechanical Systems and Signal Processing, 2023, 189: 110086. doi: 10.1016/j.ymssp.2022.110086
    [5] 唐冶, 方勃, 张业伟, 等. 非线性弹簧支承悬臂输液管道的分岔与混沌分析[J]. 振动与冲击, 2011, 30(8): 269-274.

    TANG Ye, FANG Bo, ZHANG Yewei, et al. Bifurcation and chaos analysis of cantilever pipeline conveying fluid with nonlinear spring support[J]. Journal of Vibration and Shock, 2011, 30(8): 269-274. (in Chinese)
    [6] 包日东, 闻邦椿. 微分求积法分析弹性支承输流管道的稳定性[J]. 东北大学学报(自然科学版), 2007, 28(7): 1017-1020.

    BAO Ridong, WEN Bangchun. Differential quadrature method to analyze stability of elastically-supported fluid conveying pipelines[J]. Journal of Northeastern University (Natural Science), 2007, 28(7): 1017-1020. (in Chinese)
    [7] 毛晓晔, 丁虎, 陈立群. 3∶1内共振下超临界输液管受迫振动响应[J]. 应用数学和力学, 2016, 37(4): 345-351. doi: 10.3879/j.issn.1000-0887.2016.04.002

    MAO Xiaoye, DING Hu, CHEN Liqun. Forced vibration responses of supercritical fluid-conveying pipes in 3∶1 internal resonance[J]. Applied Mathematics and Mechanics, 2016, 37(4): 345-351. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.04.002
    [8] LI S J, LIU G M, KONG W T. Vibration analysis of pipes conveying fluid by transfer matrix method[J]. Nuclear Engineering and Design, 2014, 266: 78-88. doi: 10.1016/j.nucengdes.2013.10.028
    [9] 赵千里. 输流管路流固耦合振动特性研究及共振可靠性分析[D]. 沈阳: 东北大学, 2019.

    ZHAO Qianli. Analysis for fluid structure interaction vibration characteristics and resonance reliability of fluid conveying pipe[D]. Shenyang: Northeastern University, 2019. (in Chinese)
    [10] SAZESH S, SHAMS S. Vibration analysis of cantilever pipe conveying fluid under distributed random excitation[J]. Journal of Fluids and Structures, 2019, 87: 84-101. doi: 10.1016/j.jfluidstructs.2019.03.018
    [11] 袁嘉瑞, 丁虎, 陈立群. 微曲输流管道振动固有频率分析与仿真[J]. 应用数学和力学, 2022, 43(7): 719-726. doi: 10.21656/1000-0887.420299

    YUAN Jiarui, DING Hu, CHEN Liqun. Analysis and simulation of natural frequencies of slightly curved pipes[J]. Applied Mathematics and Mechanics, 2022, 43(7): 719-726. (in Chinese) doi: 10.21656/1000-0887.420299
    [12] 孙诣博, 魏莎, 丁虎, 等. 基于路径积分法的输液管道随机动态响应分析[J]. 力学学报, 2023, 55(6): 1371-1381.

    SUN Yibo, WEI Sha, DING Hu, et al. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381. (in Chinese)
    [13] 颜雄, 魏莎, 毛晓晔, 等. 两端弹性支承输流管道固有特性研究[J]. 力学学报, 2022, 54(5): 1341-1352.

    YAN Xiong, WEI Sha, MAO Xiaoye, et al. Study on natural characteristics of fluid-conveying pipes with elastic supports at both ends[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1341-1352. (in Chinese)
    [14] 熊宇, 张怀亮, 彭欢. 一种新型液压管道抗振支承研究[J]. 噪声与振动控制, 2017, 37(2): 168-172.

    XIONG Yu, ZHANG Huailiang, PENG Huan. Research on a new type of anti-vibration supports for hydraulic pipelines[J]. Noise and Vibration Control, 2017, 37(2): 168-172. (in Chinese)
    [15] 王晶, 陈果, 郑其辉, 等. 卡箍对飞机液压管道动态应力的影响分析[J]. 航空计算技术, 2014, 44(1): 64-67.

    WANG Jing, CHEN Guo, ZHENG Qihui, et al. Effect of clamp on aircraft hydraulic pipeline dynamic stress[J]. Aeronautical Computing Technique, 2014, 44(1): 64-67. (in Chinese)
    [16] 李枫, 刘伟, 韦顺超, 等. 航空液压管道卡箍等效刚度及其影响因素研究[J]. 机械科学与技术, 2017, 36(9): 1472-1476.

    LI Feng, LIU Wei, WEI Shunchao, et al. Research on equivalent stiffness and influence factors of aero-clamps for aircraft hydraulic pipelines[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1472-1476. (in Chinese)
    [17] 赵家奎. 微分变换及其在电路中的应用[M]. 武汉: 华中理工大学出版社, 1986.

    ZHAO Jiakui. Differential Transformation and Its Application in Circuits[M]. Wuhan: Huazhong University of Science and Technology Press, 1986. (in Chinese)
    [18] 林彬, 李开泰. 求解非线性微分方程的微分变换方法[J]. 兰州大学学报(自然科学版), 2009, 45(6): 132-135.

    LIN Bin, LI Kaitai. Differential transformation method for solving nonlinear differential equations[J]. Journal of Lanzhou University (Natural Sciences), 2009, 45(6): 132-135. (in Chinese)
    [19] TIAN R, WANG D. Optimal design of beam structure support for controlling reaction force during vibration[C]//The 26th International Congress on Sound and Vibration. Montréal, 2019.
    [20] 田瑞, 王栋. 梁结构振动支承约束反力控制[J]. 噪声与振动控制, 2021, 41(2): 50-55.

    TIAN Rui, WANG Dong. Optimal design of beam structure supports for controlling constraint reaction forces during vibration[J]. Noise and Vibration Control, 2021, 41(2): 50-55. (in Chinese)
    [21] 任建亭, 姜节胜. 输流管道系统振动研究进展[J]. 力学进展, 2003, 33(3): 313-324.

    REN Jianting, JIANG Jiesheng. Advances and trends on vibration of pipes conveying fluid[J]. Advances in Mechanics, 2003, 33(3): 313-324. (in Chinese)
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  34
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-26
  • 修回日期:  2024-02-22
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回