留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

修正KDF-SPH方法的激波问题数值模拟

李宏杨 热合买提江·依明

李宏杨, 热合买提江·依明. 修正KDF-SPH方法的激波问题数值模拟[J]. 应用数学和力学, 2024, 45(12): 1483-1493. doi: 10.21656/1000-0887.440304
引用本文: 李宏杨, 热合买提江·依明. 修正KDF-SPH方法的激波问题数值模拟[J]. 应用数学和力学, 2024, 45(12): 1483-1493. doi: 10.21656/1000-0887.440304
LI Hongyang, RAHMATJAN Imin. Numerical Simulations of Shock Problems With the Revised KDF-SPH Method[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1483-1493. doi: 10.21656/1000-0887.440304
Citation: LI Hongyang, RAHMATJAN Imin. Numerical Simulations of Shock Problems With the Revised KDF-SPH Method[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1483-1493. doi: 10.21656/1000-0887.440304

修正KDF-SPH方法的激波问题数值模拟

doi: 10.21656/1000-0887.440304
基金项目: 

新疆自然科学基金 2020D01C022

国家自然科学基金 51565054

详细信息
    作者简介:

    李宏杨(1997—),男,硕士生(E-mail: lhyl0918@163.com)

    通讯作者:

    热合买提江·依明(1974—),男,副教授,博士,硕士生导师(通讯作者. E-mail: rahmatjanim@xju.edu.cn)

  • 中图分类号: O354.5

Numerical Simulations of Shock Problems With the Revised KDF-SPH Method

  • 摘要: 基于光滑粒子流体动力学(smooth particle hydrodynamics, SPH)方法中的光滑核近似和Taylor级数展开原理,利用核函数矩对KDF-SPH(kernel derivative free SPH)方法进行了修正.为了验证修正方法的适用性和可行性,将该方法应用于不同情况下一维激波管问题的数值模拟,并对模拟结果进行分析.结果表明,修正方法能很好地捕捉到激波和接触不连续的位置和强度,修正方法不要求核函数可导性,不计算核函数矩,计算量更小,计算效率更高.
  • 图  1  激波管问题

    Figure  1.  Shock tube problems

    图  2  Sod问题的SPH粒子分布

    Figure  2.  The SPH particle distributions for the Sod problem

    图  3  t=0.2 s时刻,Sod问题的SPH解、KDF-SPH解、修正解与精确解

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The SPH solution, the KDF-SPH solution, the revised solution and the exact solution of the Sod problem at t=0.2 s

    图  4  t=0.15 s时刻,Sjögreen测试的SPH解、KDF-SPH解、修正解与精确解

    Figure  4.  The SPH solution, the KDF-SPH solution, the revised solution and the exact solution of the Sjögreen test at t=0.15 s

    图  5  t=0.012 s时刻,爆炸波问题的SPH解、KDF-SPH解、修正解与精确解

    Figure  5.  The SPH solution, the KDF-SPH solution, the revised solution and the exact solution of the blast wave problem at t=0.012 s

    图  6  t=0.035 s时刻,强冲击碰撞问题的SPH解、KDF-SPH解、修正解与精确解

    Figure  6.  The SPH solution, the KDF-SPH solution, the revised solution and the exact solution of the strong shock problem at t=0.035 s

    表  1  计算量对比

    Table  1.   Comparison of calculations

    revised KDF-SPH KDF-SPH conventional SPH
    nuclear derivative needless needless needed
    kernel function moment needless needed needless
    下载: 导出CSV

    表  2  程序运行时长比较

    Table  2.   Comparison of program running time costs

    case N t/s
    revised KDF-SPH KDF-SPH conventional SPH
    Sod problem 600 37.066 70 52.095 91 47.466 41
    6 000 2 890.730 82 4 429.704 88 4 232.116 63
    Sjögreen test 600 37.789 27 52.667 87 48.074 76
    6 000 3 027.268 75 4 543.114 52 4 077.673 14
    blast wave problem 600 46.298 74 63.743 67 57.654 41
    6 000 2 974.784 74 4 603.566 58 4 017.884 46
    strong shock problem 600 391.313 07 551.295 24 508.942 10
    6 000 29 577.200 15 46 118.617 35 40 347.813 63
    下载: 导出CSV
  • [1] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013. doi: 10.1086/112164
    [2] HE F, ZHANG H S, HUANG C, et al. Numerical investigation of the solitary wave breaking over a slope by using the finite particle method[J]. Coastal Engineering, 2020, 156: 103617. doi: 10.1016/j.coastaleng.2019.103617
    [3] HE F, ZHANG H S, HUANG C, et al. A stable SPH model with large CFL numbers for multi-phase flows with large density ratios[J]. Journal of Computational Physics, 2022, 453: 110944. doi: 10.1016/j.jcp.2022.110944
    [4] FENG D Y, IMIN R. A kernel derivative free SPH method[J]. Results in Applied Mathematics, 2023, 17: 100355. doi: 10.1016/j.rinam.2023.100355
    [5] HUANG C, LEI J M, LIU M B, et al. A kernel gradient free (KGF) SPH method[J]. International Journal for Numerical Methods in Fluids, 2015, 78(11): 691-707. doi: 10.1002/fld.4037
    [6] MAATOUK K. Third order derivative free SPH iterative method for solving nonlinear systems[J]. Applied Mathematics and Computation, 2015, 270: 557-566. doi: 10.1016/j.amc.2015.08.083
    [7] IMIN R, IMINJAN A, HALIK A. A new revised scheme for SPH[J]. International Journal of Computational Methods, 2018, 15(5): 1-17.
    [8] IMIN R, WEI Y, IMINJAN A. New corrective scheme for DF-SPH[J]. Computational Particle Mechanics, 2020, 7(3): 471-478. doi: 10.1007/s40571-019-00273-w
    [9] HUANG C, LONG T, LI S M, et al. A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils[J]. Engineering Analysis With Boundary Elements, 2019, 106: 571-587. doi: 10.1016/j.enganabound.2019.06.010
    [10] GAROOSI F, SHAKIBAEINIA A. Numerical simulation of free-surface flow and convection heat transfer using a modified weakly compressible smoothed particle hydrodynamics (WCSPH) method[J]. International Journal of Mechanical Sciences, 2020, 188: 105940. doi: 10.1016/j.ijmecsci.2020.105940
    [11] HUANG C, LEI J M, LIU M B, et al. An improved KGF-SPH with a novel discrete scheme of Laplacian operator for viscous incompressible fluid flows[J]. International Journal for Numerical Methods in Fluids, 2016, 81(6): 377-396. doi: 10.1002/fld.4191
    [12] 王建玲, 李小纲, 汪文帅. 一个改进的三阶WENO-Z型格式[J]. 应用数学和力学, 2021, 42(4): 394-404. doi: 10.21656/1000-0887.410203

    WANG Jianling, LI Xiaogang, WANG Wenshuai. An improved 3rd-order WENO-Z type scheme[J]. Applied Mathematics and Mechanics, 2021, 42(4): 394-404. (in Chinese) doi: 10.21656/1000-0887.410203
    [13] 张成治, 郑素佩, 陈雪, 等. 求解理想磁流体方程的四阶WENO型熵稳定格式[J]. 应用数学和力学, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178

    ZHANG Chengzhi, ZHENG Supei, CHEN Xue, et al. A 4th-order WENO-type entropy stable scheme for ideal magnetohydrodynamic equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. (in Chinese) doi: 10.21656/1000-0887.440178
    [14] MONAGHAN J J, GINGOLD R A. Shock simulation by the particle method SPH[J]. Journal of Computational Physics, 1983, 52(2): 374-389. doi: 10.1016/0021-9991(83)90036-0
    [15] LI M K, ZHANG A M, PENG Y X, et al. An improved model for compressible multiphase flows based on smoothed particle hydrodynamics with enhanced particle regeneration technique[J]. Journal of Computational Physics, 2022, 458: 111106. doi: 10.1016/j.jcp.2022.111106
    [16] MENG Z F, ZHANG A M, WANG P P, et al. A shock-capturing scheme with a novel limiter for compressible flows solved by smoothed particle hydrodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 386: 114082. doi: 10.1016/j.cma.2021.114082
    [17] WANG P P, ZHANG A M, MENG Z F, et al. A new type of WENO scheme in SPH for compressible flows with discontinuities[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 381: 113770. doi: 10.1016/j.cma.2021.113770
    [18] SIROTKIN F V, YOH J J. A smoothed particle hydrodynamics method with approximate Riemann solvers for simulation of strong explosions[J]. Computers & Fluids, 2013, 88: 418-429.
    [19] 徐建于, 黄生洪. 圆柱形汇聚激波诱导Richtmyer-Meshkov不稳定的SPH模拟[J]. 力学学报, 2019, 51(4): 998-1011.

    XU Jianyu, HUANG Shenghong. Numerical simulation of cylindrical converging shock induced Richtmyer-Meshkov instability with SPH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 998-1011. (in Chinese)
    [20] FULK D A, QUINN D W. An analysis of 1-D smoothed particle hydrodynamics kernels[J]. Journal of Computational Physics, 1996, 126(1): 165-180. doi: 10.1006/jcph.1996.0128
    [21] LIU G R, LIU M B. Smoothed Particle Hydrodynamics: a Meshfree Particle Method[M]. Singapore: World Scientific Publishing, 2003.
    [22] SIGALOTTI L D G, LÓPEZ H, TRUJILLO L. An adaptive SPH method for strong shocks[J]. Journal of Computational Physics, 2009, 228(16): 5888-5907. doi: 10.1016/j.jcp.2009.04.041
    [23] DANAILA I, JOLY P, KABER S M, POSTEL M. An Introduction to Scientific Computing[M]. New York: Springer-Verlag, 2007.
    [24] SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1): 1-31. doi: 10.1016/0021-9991(78)90023-2
    [25] MONAGHAN J. SPH and Riemann solvers[J]. Journal of Computational Physics, 1997, 136(2): 298-307. doi: 10.1006/jcph.1997.5732
    [26] WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1): 115-173. doi: 10.1016/0021-9991(84)90142-6
    [27] TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin: Springer-Verlag, 2009.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  40
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 修回日期:  2024-03-19
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回