留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性基底上软物质梁的弹性毛细变形

俞慧婷 王雨 黄再兴

俞慧婷, 王雨, 黄再兴. 弹性基底上软物质梁的弹性毛细变形[J]. 应用数学和力学, 2024, 45(12): 1530-1540. doi: 10.21656/1000-0887.450028
引用本文: 俞慧婷, 王雨, 黄再兴. 弹性基底上软物质梁的弹性毛细变形[J]. 应用数学和力学, 2024, 45(12): 1530-1540. doi: 10.21656/1000-0887.450028
YU Huiting, WANG Yu, HUANG Zaixing. Elastocapillary Deformation of Soft Matter Beams on Elastic Substrate[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1530-1540. doi: 10.21656/1000-0887.450028
Citation: YU Huiting, WANG Yu, HUANG Zaixing. Elastocapillary Deformation of Soft Matter Beams on Elastic Substrate[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1530-1540. doi: 10.21656/1000-0887.450028

弹性基底上软物质梁的弹性毛细变形

doi: 10.21656/1000-0887.450028
基金项目: 

国家自然科学基金 11172130

国家自然科学基金 12072145

详细信息
    作者简介:

    俞慧婷(2000—),女,硕士(E-mail: yuyuyu@nuaa.edu.cn)

    通讯作者:

    黄再兴(1988—),男,教授,博士(通讯作者. E-mail: huangzx@nuaa.edu.cn)

  • 中图分类号: O343.2

Elastocapillary Deformation of Soft Matter Beams on Elastic Substrate

  • 摘要: 当软物质微/纳米结构表面存在液滴时,需要考虑由润湿诱导的弹性毛细变形. 该文基于一个新的润湿方程,推导了液滴铺展半径与其表面曲率的关系,并得到了无重力影响时液滴保持球冠状的必要条件;结合Winkler地基模型,计算了弹性基底上软物质微梁的弹性毛细变形,得到了微梁挠度的解析解. 以聚苯乙烯(EPS)和聚乙烯(PE)梁为例,分析并讨论了液滴铺展半径、弹性模量和基底参数对微梁的挠曲变形以及从基底上脱黏的影响.
  • 图  1  液滴作用在置于弹性基底上的梁

    Figure  1.  Droplets acting on a beam placed on elastic foundation

    图  2  润湿引起弹性基底上梁的变形

    Figure  2.  Wetting induced deformation of a beam on elastic foundation

    图  3  梁的变形简化图

    Figure  3.  Simplified deformation diagram of the beam

    图  4  液滴半径R=0.01 mm,0~l1段梁所受合力f(l1)

    Figure  4.  For droplet radius R=0.01 mm, resultant force f(l1) of the beam in the 0~l1 section

    图  5  微梁的挠度曲线

    Figure  5.  The deflection curve of the micro-beam

    图  6  半径为1 mm的液滴润湿导致的微梁弯曲

    Figure  6.  The deflection curve of the micro-beam wetted by a droplet with a radius of 1 mm

    图  7  半径为0.1 mm的液滴润湿导致的微梁弯曲

    Figure  7.  The deflection curve of the micro-beam wetted by a droplet with a radius of 0.1 mm

    图  8  半径为0.01 mm的液滴润湿导致的微梁弯曲

    Figure  8.  The deflection curve of the micro-beam wetted by a droplet with a radius of 0.01 mm

    图  9  PE和EPS微梁在半径为0.01 mm液滴作用下的弹性毛细弯曲

    Figure  9.  Elastocapillary bending of PE and EPS microbeams subjected to droplet action with a radius of 0.01 mm

    图  10  不同弹性基底上的液滴引起的微梁的弯曲变形(R=0.01 mm)

    Figure  10.  Deflection curves of microbeams caused by droplets on different elastic substrates (R=0.01 mm)

    表  1  EPS微梁的材料参数与几何参数

    Table  1.   Material and geometric parameters of the EPS micro-beam

    l/mm E/MPa d/mm h/mm I/mm4
    5 1.8 1 0.05 1/96 000
    下载: 导出CSV

    表  2  微梁最大挠度及黏附长度与液滴半径的对应关系

    Table  2.   Maximum deflections and adhesive lengths of the micro-beam vs. droplet radii

    parameter R/mm
    1 0.1 0.01
    y(0)/mm 0.024 2 0.046 2 0.049 6
    l1/mm 1.4 0.83 0.82
    下载: 导出CSV

    表  3  微梁的最大挠度及黏附长度随基床系数的变化

    Table  3.   Maximum deflections and adhesive lengths of the micro-beam vs. the bedding coefficient

    parameter k/(10-3·N/mm3)
    1 1.5 2 20
    y(0)/mm 0.046 1 0.034 0 0.027 4 0.004 9
    l1/mm 2.60 2.35 2.19 1.23
    下载: 导出CSV
  • [1] FENG S L, DELANNOY J, MALOD A, et al. Tip-induced flipping of droplets on Janus pillars: from local reconfiguration to global transport[J]. Science Advances, 2020, 6(28): eabb4540. doi: 10.1126/sciadv.abb4540
    [2] 余迎松. 液气界面张力垂直分量引起的基底弹性变形[J]. 应用数学和力学, 2012, 33(9): 1025-1042. doi: 10.3879/j.issn.1000-0887.2012.09.001

    YU Yingsong. Substrate elastic deformation due to vertical component of liquid-vapor interfacial tension[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1025-1042. (in Chinese) doi: 10.3879/j.issn.1000-0887.2012.09.001
    [3] LESTER G R. Contact angles of liquids at deformable solid surfaces[J]. Journal of Colloid Science, 1961, 16(4): 315-326. doi: 10.1016/0095-8522(61)90032-0
    [4] RUSANOV A I. Theory of the wetting of elastically deformed bodies, 1: deformation with a finite contact angle[J]. Colloid Journal of the USSR, 1975, 37 : 614-622.
    [5] FORTES M A. Deformation of solid surfaces due to capillary forces[J]. Journal of Colloid and Interface Science, 1984, 100(1): 17-26. doi: 10.1016/0021-9797(84)90407-7
    [6] STYLE R W, DUFRESNE E R. Static wetting on deformable substrates, from liquids to soft solids[J]. Soft Matter, 2012, 8(27): 7177-7184. doi: 10.1039/c2sm25540e
    [7] STYLE R W, BOLTYANSKIY R, CHE Y L, et al. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses[J]. Physical Review Letters, 2013, 110(6): 066103. doi: 10.1103/PhysRevLett.110.066103
    [8] BOSTWICK J B, SHEARER M, DANIELS K E. Elastocapillary deformations on partially-wetting substrates: rival contact-line models[J]. Soft Matter, 2014, 10(37): 7361-7369. doi: 10.1039/C4SM00891J
    [9] KERN R, MVLLER P. Deformation of an elastic thin solid induced by a liquid droplet[J]. Surface Science, 1992, 264(3): 467-494. doi: 10.1016/0039-6028(92)90203-I
    [10] OLIVES J. Capillarity and elasticity. The example of the thin plate[J]. Journal of Physics: Condensed Matter, 1993, 5 : 2081-2094. doi: 10.1088/0953-8984/5/14/007
    [11] LIU J L, NIE Z X, JIANG W G. Deformation field of the soft substrate induced by capillary force[J]. Physica B: Condensed Matter, 2009, 404(8/11): 1195-1199.
    [12] LIU J L, XIA R, MEI Y, et al. Droplet-induced abnormal bending of micro-beams[J]. Journal of Adhesion Science and Technology, 2013, 27(13): 1418-1431. doi: 10.1080/01694243.2012.742400
    [13] 陶泽, 李墨筱, 提飞, 等. 充液弹性毛细管低温相变的力学分析[J]. 应用数学和力学, 2021, 42(10): 1045-1061. doi: 10.21656/1000-0887.420301

    TAO Ze, LI Moxiao, TI Fei, et al. Mechanics of low-temperature phase transition in liquid-filled elastic capillary tubes[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1045-1061. (in Chinese) doi: 10.21656/1000-0887.420301
    [14] YU Y S, ZHAO Y P. Deformation of PDMS membrane andmicrocantilever by a water droplet: comparison between Mooney-Rivlin and linear elastic constitutive models[J]. Journal of Colloid and Interface Science, 2009, 332(2): 467-476. doi: 10.1016/j.jcis.2008.12.054
    [15] LIU J L, XIA R, ZHOU X H. A new look on wetting models: continuum analysis[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(11): 2158-2166. doi: 10.1007/s11433-012-4895-2
    [16] HUANG Z X. New equations of wetting[J]. Philosophical Magazine Letters, 2020, 100 (4): 181-188. doi: 10.1080/09500839.2020.1740811
    [17] HUANG Z X. Formulation and a new solving approach to the problem of the wetting-induced deformation[J]. Philosophical Magazine, 2021, 101(24): 2560-2583. doi: 10.1080/14786435.2021.1980238
    [18] DRELICH J. The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 116(1/2): 43-54.
    [19] OKUBO T. Surface tension of structured colloidal suspensions of polystyrene and silica spheres at the air-water interface[J]. Journal of Colloid and Interface Science, 1995, 171(1): 55-62. doi: 10.1006/jcis.1995.1150
    [20] VERA-GRAZIANO R, MUHL S, RIVERA-TORRES F. The effect of illumination on contact angles of pure water on crystalline silicon[J]. Journal of Colloid and Interface Science, 1995, 170(2): 591-597. doi: 10.1006/jcis.1995.1139
    [21] DRELICH J, MILLER J D. The line/pseudo-line tension in three-phase systems[J]. Particulate Science and Technology, 1992, 10(1): 1-20. doi: 10.1080/02726359208906593
    [22] DRELICH J, MILLER J D. The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship[J]. Journal of Colloid and Interface Science, 1994, 164(1): 252-259. doi: 10.1006/jcis.1994.1164
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  34
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-03-11
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回