Deformation Modes and Energy Absorption Performances of Concave Profile Tubes Under Axial Crash
-
摘要: 研究了凹截面薄壁管受轴向冲击时的变形模式及能量吸收性能. 研究结果展示了凹截面管相比传统凸多边形管在提高能量吸收性能方面的优势. 根据数值模拟结果绘制出凹截面薄壁管轴向变形模式分类图,分析了变形模式随截面参数变化的规律. 研究了凹截面薄壁管在轴向冲击及倾斜冲击载荷作用下的变形模式及能量吸收性能. 研究表明,合理设计的凹截面薄壁管较传统凸正多边形薄壁管的能量吸收性能有显著提高.Abstract: The deformation modes and energy absorption performances of thin-walled concave profile tubes subjected to axial crash were investigated, and the advantages of concave tubes over conventional convex polygonal tubes in improving energy absorption performances were demonstrated. The classification of axial deformation modes of concave tubes and their variations with cross-section parameters were studied with the finite element method, and the concave tubes under oblique impact loads were also investigated. The concave tubes show dramatic improvements of energy absorption performances over the conventional square tubes.
-
Key words:
- concave profile /
- thin-walled structures /
- axial crushing /
- deformation mode /
- energy absorption
-
表 1 倾斜角为α=5°时,方管、凹十二边形管及凹二十边形管能量吸收性能
Table 1. Crashworthiness of tubes under oblique loads for α=5°: the square tube, the concave dodecagon tube and the concave icosagon tube
profile MCF/kN IPCF/kN EA/J SEA/(kJ/kg) CFE/% square 6.02 13.26 632.94 5.21 45.40 concave dodecagon 13.21 17.49 1 388.34 11.43 75.53 concave icosagon 18.64 29.36 1 959.57 16.13 63.49 表 2 倾斜角α=10°时,方管、凹十二边形管及凹二十边形管能量吸收性能
Table 2. Crashworthiness of tubes under oblique loads for α=10°: the square tube, the concave dodecagon tube and the concave icosagon tube
profile MCF/kN IPCF/kN EA/J SEA/(kJ/kg) CFE/% square 5.48 9.85 575.92 4.74 55.63 concave dodecagon 11.89 17.57 1 249.97 10.29 67.67 concave icosagon 8.77 22.74 922.18 7.59 38.57 -
[1] 余同希, 卢国兴, 张雄. 能量吸收: 结构与材料的力学行为和塑性分析[M]. 北京: 科学出版社, 2019.YU Tongxi, LU Guoxing, ZHANG Xiong. Energy Absorption: Mechanical Behavior and Plastic Analysis of Structures and Materials[M]. Beijing: Science Press, 2019. (in Chinese) [2] 李金矿, 万文玉, 刘闯. 形状记忆合金蜂窝结构抗冲击性能研究[J]. 应用数学和力学, 2024, 45(1): 34-44. doi: 10.21656/1000-0887.440004LI Jinkuang, WAN Wenyu, LIU Chuang. Study on impact resistance of shape memory alloy honeycomb structures[J]. Applied Mathematics and Mechanics, 2024, 45(1): 34-44. (in Chinese) doi: 10.21656/1000-0887.440004 [3] 杨帆, 王鹏, 范华林, 等. 薄壁管状吸能结构的吸能性能及变形模式的理论研究进展[J]. 力学季刊, 2018, 39(4): 663-680.YANG Fan, WANG Peng, FAN Hualin, et al. Review of theoretical models on the energy absorption and deformation modes of the thin-walled tubular structures[J]. Chinese Quarterly of Mechanics, 2018, 39(4): 663-680. (in Chinese) [4] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10-15. doi: 10.1093/qjmam/13.1.10 [5] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures[J]. Journal of Applied Mechanics, 1983, 50(4a): 727-734. doi: 10.1115/1.3167137 [6] MAMALIS A G, MANOLAKOS D E, BALDOUKAS A K, et al. Energy dissipation and associated failuremodes when axially loading polygonal thin-walled cylinders[J]. Thin-Walled Structures, 1991, 12(1): 17-34. doi: 10.1016/0263-8231(91)90024-D [7] WHITE M D, JONES N, ABRAMOWICZ W. A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections[J]. International Journal of Mechanical Sciences, 1999, 41(2): 209-233. doi: 10.1016/S0020-7403(98)00048-4 [8] HA N S, LU G X. Thin-walled corrugated structures: a review of crashworthiness designs and energy absorption characteristics[J]. Thin-Walled Structures, 2020, 157: 106995. doi: 10.1016/j.tws.2020.106995 [9] KIM H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency[J]. Thin-Walled Structures, 2002, 40(4): 311-327. doi: 10.1016/S0263-8231(01)00069-6 [10] CHEN W, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4): 287-306. doi: 10.1016/S0263-8231(01)00006-4 [11] ZHANG X, CHENG G, ZHANG H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures[J]. Thin-Walled Structures, 2006, 44(11): 1185-1191. doi: 10.1016/j.tws.2006.09.002 [12] TANG Z L, LIU S T, ZHANG Z H. Energy absorption properties of non-convex multi-corner thin-walled columns[J]. Thin-Walled Structures, 2012, 51: 112-120. doi: 10.1016/j.tws.2011.10.005 [13] LI Y, YOU Z. Origami concave tubes for energy absorption[J]. International Journal of Solids and Structures, 2019, 169: 21-40. doi: 10.1016/j.ijsolstr.2019.03.026 [14] WU S Y, LI G Y, SUN G Y, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube[J]. Thin-Walled Structures, 2016, 105: 121-134. doi: 10.1016/j.tws.2016.03.029 [15] HOU S J, LI Q, LONG S Y, et al. Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria[J]. Finite Elements in Analysis and Design, 2007, 43(6/7): 555-565. [16] FYLLINGEN ∅, HOPPERSTAD O S, LANGSETH M. Simulations of a top-hat section subjected to axial crushing taking into account material and geometry variations[J]. International Journal of Solids and Structures, 2008, 45(24): 6205-6219. doi: 10.1016/j.ijsolstr.2008.07.011 [17] MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section[J]. Thin-Walled Structures, 2003, 41(10): 891-900. doi: 10.1016/S0263-8231(03)00046-6 [18] YAMASHITA M, GOTOH M, SAWAIRI Y. Axial crush of hollow cylindrical structures with various polygonal cross-sections numerical simulation and experiment[J]. Journal of Materials Processing Technology, 2003, 140(1/2/3): 59-64. [19] WIERZBICKI T, JONES N. Structural Failure[M]. New York: John Wiley and Sons, 1989. [20] 刘旺玉, 田鹏飞, 金林, 等. 角单元对薄壁管耐撞性的影响[J]. 华南理工大学学报(自然科学版), 2021, 49(6): 28-33.LIU Wangyu, TIAN Pengfei, JIN Lin, et al. Influence of angle element on crashworthiness of thin-walled tubes[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(6): 28-33. (in Chinese) [21] SANTOSA S P, WIERZBICKI T, HANSSEN A G, et al. Experimental and numerical studies of foam-filled sections[J]. International Journal of Impact Engineering, 2000, 24(5): 509-534. -