留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向冷弯型钢构件弹性屈曲临界荷载预测的BP神经网络训练算法比选

戴宜凌 王少快 尹凌峰

戴宜凌, 王少快, 尹凌峰. 面向冷弯型钢构件弹性屈曲临界荷载预测的BP神经网络训练算法比选[J]. 应用数学和力学, 2025, 46(2): 129-141. doi: 10.21656/1000-0887.450050
引用本文: 戴宜凌, 王少快, 尹凌峰. 面向冷弯型钢构件弹性屈曲临界荷载预测的BP神经网络训练算法比选[J]. 应用数学和力学, 2025, 46(2): 129-141. doi: 10.21656/1000-0887.450050
DAI Yiling, WANG Shaokuai, YIN Lingfeng. Evaluation of BP Neural Network Algorithms for Predicting Elastic Buckling Loads on Cold-Formed Steel Components[J]. Applied Mathematics and Mechanics, 2025, 46(2): 129-141. doi: 10.21656/1000-0887.450050
Citation: DAI Yiling, WANG Shaokuai, YIN Lingfeng. Evaluation of BP Neural Network Algorithms for Predicting Elastic Buckling Loads on Cold-Formed Steel Components[J]. Applied Mathematics and Mechanics, 2025, 46(2): 129-141. doi: 10.21656/1000-0887.450050

面向冷弯型钢构件弹性屈曲临界荷载预测的BP神经网络训练算法比选

doi: 10.21656/1000-0887.450050
基金项目: 

国家自然科学基金 52278150

详细信息
    作者简介:

    戴宜凌(2000—),女,硕士(E-mail: daiyiling1022@163.com)

    通讯作者:

    尹凌峰(1974—),男,教授,博士,博士生导师(通讯作者. E-mail: eking@seu.edu.cn)

  • 中图分类号: O31

Evaluation of BP Neural Network Algorithms for Predicting Elastic Buckling Loads on Cold-Formed Steel Components

  • 摘要: 弹性屈曲临界荷载是准确评价冷弯型钢构件承载力的重要指标. 利用人工神经网络(artificial neural networks, ANNs)模型对冷弯C型截面轴压构件的屈曲临界载荷进行了预测,将影响屈曲的几何参数和有限条法所得的计算结果作为数据集,对神经网络模型进行了训练、验证和测试. 基于最优化理论,采用6种不同的优化算法进行了模型的训练,并比较了不同算法的网络模型性能. 通过随机网格搜索确定最优超参数,使用3种统计参数来评估训练后的人工神经网络的性能,以得到最适合预测屈曲临界荷载的神经网络模型. 结果表明:Levenberg-Marquardt(L-M)算法在非线性最小二乘问题上相较于其他算法具有更高的准确性,多次训练后,L-M算法使模型预测误差非常小,而其他算法在准确度上不及L-M算法.
  • 图  1  特征曲线

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Signature curve

    图  2  冷弯型钢C型构件截面尺寸示意图

    Figure  2.  Schematic diagram of sectional dimensions of cold-formed lipped C-type channel steel columns

    图  3  截面尺寸直方图

    Figure  3.  Histograms of sectional dimensions

    图  4  神经网络架构图

    Figure  4.  The neural network architecture

    图  5  神经网络(输入层、隐藏层、输出层)

    Figure  5.  The neural network (input layer, hidden layer, output layer)

    图  6  MSE和计算时长随神经元个数的变化

    Figure  6.  MSE and computation time changes with the number of neurons

    图  7  神经网络模型预测结果与CUFSM计算结果对比

    Figure  7.  Comparison between neural network model predictions and CUFSM calculation results

    图  8  GPU加速的SCG算法与无GPU加速的L-M算法预测值的MAPE对比

    Figure  8.  Comparison of MAPE values between the GPU-accelerated SCG algorithm and the non-GPU-accelerated L-M algorithm

    表  1  冷弯型C型截面尺寸范围(单位: mm)

    Table  1.   Ranges of sectional dimensions of cold-formed lipped channel steels (unit: mm)

    component min max
    Hc 41.15 406.40
    Bc 31.75 88.90
    Dc 4.78 25.40
    t 0.48 3.15
    下载: 导出CSV

    表  2  各训练算法运行时长

    Table  2.   Runtime lengths of various training algorithms

    training algorithm average time/s ratio min time/s max time/s
    GDX 1.29 1.00 1.16 1.41
    GDM 3.93 3.05 0.32 4.18
    GD 4.13 3.21 4.10 4.19
    SCG 9.36 7.27 7.81 37.75
    BFG 24.80 19.26 16.93 167.68
    L-M 132.10 102.62 110.54 135.84
    下载: 导出CSV

    表  3  各训练算法验证集误差

    Table  3.   Validation set errors for various training algorithms

    training algorithm average MSE ratio min MSE max MSE
    L-M 2.01E4 1.00 1.67E4 2.56E4
    BFG 4.48E4 2.16 3.89E4 5.74E4
    SCG 5.69E4 2.74 4.95E4 6.74E4
    GDX 8.73E3 42.10 6.20E3 1.30E2
    GD 8.67E2 417.85 6.92E2 1.16E1
    GDM 8.99E2 433.52 5.09E2 2.02E1
    下载: 导出CSV

    表  4  BFG和SCG训练算法时长对比

    Table  4.   Comparison of training durations between BFG and SCG algorithms

    training algorithm average time/s ratio min time/s max time/s
    BFG 40.23 1.00 22.46 64.90
    SCG 45.27 1.13 19.40 208.06
    L-M 363.35 9.03 107.76 1 359.262
    下载: 导出CSV

    表  5  BFG和SCG验证集MSE对比

    Table  5.   Comparison of validation set MSE between BFG and SCG algorithms

    training algorithm average MSE ratio min MSE max MSE
    BFG 3.40E4 1.00 2.40E4 8.6E4
    SCG 3.40E4 1.00 2.70E4 4.5E4
    L-M 1.95E4 0.57 1.68E4 2.33E4
    下载: 导出CSV

    表  6  BFG和SCG epoch对比

    Table  6.   Comparison of epochs between BFG and SCG algorithms

    training algorithm average epoch ratio min epoch max epoch
    BFG 1 191.90 1.00 657 1 957
    SCG 2 358.55 1.98 1 247 4 185
    L-M 1 344.75 1.13 394 5 000
    下载: 导出CSV
  • [1] VON KÁRMÁN T, SECHLER E E, DONNELL L H. The strength of thin plates in compression[J]. Journal of Fluids Engineering, 1932, 54(2): 53-56.
    [2] 杨梦欢. 冷弯薄壁卷边槽钢受压柱畸变屈曲性能的研究[D]. 武汉: 武汉理工大学, 2013.

    YANG Menghuan. Distortional buckling behavior of cold-formed thin-wall steel lipped channel columns under compression[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese)
    [3] 高段. 冷弯薄壁卷边槽钢受弯构件畸变屈曲性能研究[D]. 武汉: 武汉理工大学, 2013.

    GAO Duan. Study on distortional buckling of cold-formed thin-walled lipped channel steel in bending[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese)
    [4] 陈骥. 冷弯薄壁型钢构件的直接强度设计法[J]. 建筑钢结构进展, 2003, 5(4): 5-13.

    CHEN Ji. Direct strength method for the design of cold-formed lipped channel members[J]. Progress in Steel Building Structures, 2003, 5(4): 5-13. (in Chinese)
    [5] CHEUNG Y, THAM L. Finite Strip Method[M]. CRC Press, 1997.
    [6] LI Z, SCHAFER B W. Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM conventional and constrained finite strip methods[C]// 20 th International Specialty Conference on Cold-Formed Steel Structures. St Louis, Missouri, 2010.
    [7] ÁDÁNY S, SCHAFER B W. Buckling mode decomposition of single-branched open cross-section members via finite strip method: derivation[J]. Thin-Walled Structures, 2006, 44(5): 563-584. doi: 10.1016/j.tws.2006.03.013
    [8] UNGUREANU V, DUBINA D. Recent research advances on ECBL approach, part Ⅰ: plastic-elastic interactive buckling of cold-formed steel sections[J]. Thin-Walled Structures, 2004, 42(2): 177-194. doi: 10.1016/S0263-8231(03)00056-9
    [9] DAVIES J M. Recent research advances in cold-formed steel structures[J]. Journal of Constructional Steel Research, 2000, 55(1/2/3): 267-288.
    [10] WANG T, ZHA Z, PAN C. Prediction for elastic local buckling stress and ultimate strength of H-section beam[J]. Heliyon, 2023, 9(4): e14700. doi: 10.1016/j.heliyon.2023.e14700
    [11] ZARRINGOL M, THAI H T, THAI S, et al. Application of ANN to the design of CFST columns[J]. Structures, 2020, 28: 2203-2220. doi: 10.1016/j.istruc.2020.10.048
    [12] WU T Y, EL-TAWIL S, MCCORMICK J. Effect of cyclic flange local buckling on the capacity of steel members[J]. Engineering Structures, 2019, 200: 109705. doi: 10.1016/j.engstruct.2019.109705
    [13] PITTON S F, RICCI S, BISAGNI C. Buckling optimization of variable stiffness cylindrical shells through artificial intelligence techniques[J]. Composite Structures, 2019, 230: 111513. doi: 10.1016/j.compstruct.2019.111513
    [14] TOHIDI S, SHARIFI Y. Neural networks for inelastic distortional buckling capacity assessment of steel Ⅰ-beams[J]. Thin-Walled Structures, 2015, 94: 359-371. doi: 10.1016/j.tws.2015.04.023
    [15] 张广江, 杨德泽, 楚锡华. 基于人工神经网络的颗粒材料本构关系及边值问题研究[J]. 应用数学和力学, 2024, 45(2): 155-166. doi: 10.21656/1000-0887.440248

    ZHANG Guangjiang, YANG Deze, CHU Xihua. Study on constitutive relations and boundary value problems of granular materials based on artificial neural networks[J]. Applied Mathematics and Mechanics, 2024, 45(2): 155-166. (in Chinese) doi: 10.21656/1000-0887.440248
    [16] KAVEH A, BAKHSHPOORI T, HAMZE-ZIABARI S M. GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups[J]. Computers and Concrete, 2018, 22(2): 197-207.
    [17] KAVEH A, ELMIEH R, SERVATI H. Prediction of moment-rotation characteristic for semi-rigid connections using BP neural networks[C]//Computational Engineering Using Metaphors From Nature, 2001: 15-24.
    [18] IRANMANESH A, KAVEH A. Structural optimization by gradient-based neural networks[J]. International Journal for Numerical Methods in Engineering, 1999, 46(2): 297-311. doi: 10.1002/(SICI)1097-0207(19990920)46:2<297::AID-NME679>3.0.CO;2-C
    [19] KAVEH A, IRANMANESH A. Comparative study of back propagation and improved counter propagation neural nets in structural analysis and optimization[J]. International Journal of Space Structures, 1998, 13(4): 177-185. doi: 10.1177/026635119801300401
    [20] MOJTABAEI S M, BECQUE J, HAJIRASOULIHA I, et al. Predicting the buckling behaviour of thin-walled structural elements using machine learning methods[J]. Thin-Walled Structures, 2023, 184: 110518. doi: 10.1016/j.tws.2022.110518
    [21] WASZCZYSZYN Z, BARTCZAK M. Neural prediction of buckling loads of cylindrical shells with geometrical imperfections[J]. International Journal of Non-Linear Mechanics, 2002, 37(4/5): 763-775.
    [22] MARKOPOULOS A P, MANOLAKOS D E, VAXEVANIDIS N M. Prediction of the collapse modes of PVC cylindrical shells under compressive axial loads using artificial neural networks[C]//The International Federation for Information Processing. Boston, MA, 2007: 251-258.
    [23] PALA M. A new formulation for distortional buckling stress in cold-formed steel members[J]. Journal of Constructional Steel Research, 2006, 62(7): 716-722.
    [24] PALA M, CAGLAR N. A parametric study for distortional buckling stress on cold-formed steel using a neural network[J]. Journal of Constructional Steel Research, 2007, 63(5): 686-691.
    [25] GUZELBEY I H, CEVIK A, ERKLIG A. Prediction of web crippling strength of cold-formed steel sheetings using neural networks[J]. Journal of Constructional Steel Research, 2006, 62(10): 962-973.
    [26] DEGTYAREV V V. Neural networks for predicting shear strength of CFS channels with slotted webs[J]. Journal of Constructional Steel Research, 2021, 177: 106443.
    [27] DEGTYAREV V V, NASER M Z. Boosting machines for predicting shear strength of CFS channels with staggered web perforations[J]. Structures, 2021, 34: 3391-3403.
    [28] ÁDÁNY S, SCHAFER B W. A full modal decomposition of thin-walled, single-branched open cross-section membersvia the constrained finite strip method[J]. Journal of Constructional Steel Research, 2008, 64(1): 12-29.
    [29] NOORZAEI J, HAKIM S, JAAFAR M, et al. An optimal architecture of artificialneural network for predicting compressive strength of concrete[J]. Indian Concrete Journal, 2007, 81(8): 17-24.
    [30] FARZINPOUR A, DEHCHESHMEH E M, BROUJERDIAN V, et al. Efficient boosting-based algorithms for shear strength prediction of squat RC walls[J]. Case Studies in Construction Materials, 2023, 18: e01928.
    [31] BAI C, NGUYEN H, ASTERIS P G, et al. A refreshing view of soft computing models for predicting the deflection of reinforced concrete beams[J]. Applied Soft Computing, 2020, 97: 106831. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704028534301.html
    [32] HAKIM S J S, PAKNAHAD M, KAMARUDIN A F, et al. Buckling prediction in steel columns: unveiling insights with artificial neural networks[J]. International Journal of Engineering Trends and Technology, 2023, 71(9): 322-330.
    [33] AHMAD A, COTSOVOS D M, LAGAROS N D. Assessing the reliability of RC code predictions through the use of artificial neural networks[C]//School of Energy, Geoscience, Infrastructure and SocietyInstitute for Infrastructure & Environment. 2016.
    [34] HAGAN M T, DEMUTH H B, BEALE M. Neural Network Design[M]. PWS Publishing Co, 1997.
    [35] The MathWorks[M]. Natick, MA: MATLAB, 2012.
    [36] DENNIS JR J E, SCHNABEL R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. SIAM, 1996.
    [37] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441.
    [38] M∅LLER M F. A scaled conjugate gradient algorithm for fast supervised learning[J]. Neural Networks, 1993, 6(4): 525-533.
    [39] WORKS M. Statistics and Machine Learning Toolbox User's Guide[M]. Matwork Inc, 2017.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  29
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-04-23
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回