留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于井筒多相流理论的复杂结构井动态压井过程中的井筒压力研究

杨鹏飞 毛良杰 杨森 陈雪峰

杨鹏飞, 毛良杰, 杨森, 陈雪峰. 基于井筒多相流理论的复杂结构井动态压井过程中的井筒压力研究[J]. 应用数学和力学, 2025, 46(2): 254-270. doi: 10.21656/1000-0887.450061
引用本文: 杨鹏飞, 毛良杰, 杨森, 陈雪峰. 基于井筒多相流理论的复杂结构井动态压井过程中的井筒压力研究[J]. 应用数学和力学, 2025, 46(2): 254-270. doi: 10.21656/1000-0887.450061
YANG Pengfei, MAO Liangjie, YANG Sen, CHEN Xuefeng. Research on Wellbore Pressure in the Dynamic Killing Process for Complex Structure Wells Based on the Wellbore Multiphase Flow Theory[J]. Applied Mathematics and Mechanics, 2025, 46(2): 254-270. doi: 10.21656/1000-0887.450061
Citation: YANG Pengfei, MAO Liangjie, YANG Sen, CHEN Xuefeng. Research on Wellbore Pressure in the Dynamic Killing Process for Complex Structure Wells Based on the Wellbore Multiphase Flow Theory[J]. Applied Mathematics and Mechanics, 2025, 46(2): 254-270. doi: 10.21656/1000-0887.450061

基于井筒多相流理论的复杂结构井动态压井过程中的井筒压力研究

doi: 10.21656/1000-0887.450061
基金项目: 

国家自然科学基金 52174006

四川省重点研发项目 S0497

四川省重点研发项目 2022YFG0119

详细信息
    作者简介:

    杨鹏飞(1999—),男,硕士生(E-mail: 2653668723@qq.com)

    通讯作者:

    毛良杰(1987—),男,教授,博士(通讯作者. E-mail: maoliangjie@qq.com)

  • 中图分类号: TE28

Research on Wellbore Pressure in the Dynamic Killing Process for Complex Structure Wells Based on the Wellbore Multiphase Flow Theory

  • 摘要: 基于井筒多相流理论,并结合井眼轨迹的计算方法,建立了复杂结构井动态压井数学模型,再采用有限差分法求解,对压井过程中井筒压力进行了模拟研究,认识了初始气侵量、压井液排量与密度、水平井段长度对井筒压力的影响. 研究结果表明:在大斜度井和水平井压井过程中,套管承受的压力将会变得更大,且套管承受高压的时间也会明显增长;初始气侵量越大,为平衡井筒压力,压井过程中套管压力和立管压力越大;压井排量越大,压井过程中的套管压力越低,立管压力越大;压井液密度越大,压井过程中套管压力和立管压力越低;水平段长度越长,压井过程中的套管压力越大,压井时间越长. 研究结果对保障复杂结构井的压井作业具有指导意义.
  • 图  1  压井过程的物理模型

    Figure  1.  The physical model for the kill process

    图  2  压井过程的控制体单元

    Figure  2.  The control unit of the kill process

    图  3  井筒离散网格节点和单元网格集成区域示意图

    Figure  3.  The diagram of the integrated area of discrete grid nodes and unit grids for the wellbore

    图  4  压井模拟求解流程

    Figure  4.  The kill well simulation solution flow chart

    图  5  直井、大斜度井和水平井井眼轨迹示意图

    Figure  5.  Borehole trajectories of vertical, highly inclined and horizontal wells

    图  6  直井、大斜度井和水平井的初始含气率分布图

    Figure  6.  Initial gas content distributions of vertical, highly inclined and horizontal wells

    图  7  压井过程中套管压力和井筒动态压力分布曲线

    Figure  7.  Casing pressure and wellbore dynamic pressure distribution curves during killing

    图  8  不同气侵体积下工程师法压井过程中的套管压力和立管压力

    Figure  8.  Casing pressures and riser pressures in the process of killing well with the engineer method for different gas cut volumes

    图  9  不同气侵体积下司钻法压井过程中的套管压力和立管压力

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  9.  Casing pressures and riser pressures in the process of killing well with driller's method for different gas cut volumes

    图  10  不同压井排量下工程师法压井过程中的套管压力和立管压力

    Figure  10.  Casing pressures and riser pressures in the process of killing well with the engineer method at different kill rates

    图  11  不同压井排量下司钻法压井过程中的套管压力和立管压力

    Figure  11.  Casing pressures and riser pressures in the process of killing well with driller's method at different kill rates

    图  12  不同压井液密度下工程师法压井过程中的套管压力和立管压力

    Figure  12.  Casing pressures and riser pressures in the process of killing with the engineer method at different kill fluid densities

    图  13  不同压井液密度下司钻法压井过程中的套管压力和立管压力

    Figure  13.  Casing pressures and riser pressures in the process of killing with driller's method at different kill fluid densities

    图  14  不同水平段长度下工程师法压井过程中的套管压力和立管压力

    Figure  14.  Casing pressures and riser pressures in the process of killing well with the engineer method at different horizontal section lengths

    图  15  不同水平段长度下司钻法压井过程中的套管压力和立管压力

    Figure  15.  Casing pressures and riser pressures in the process of killing well with driller's method at different horizontal section lengths

    图  16  初始含气率分布图

    Figure  16.  The initial gas content distribution

    图  17  模拟结果对比图

    Figure  17.  Comparison of simulation results

    表  1  基础参数

    Table  1.   Basic parameters

    parameter value unit
    the straight well depth 7 606 m
    the depth of the highly inclined well 7 771 m
    the vertical depth of the highly inclined well 7 606 m
    the depth of the horizontal well 8 036 m
    the vertical depth of the horizontal well 7 606 m
    kick-off point 6 825 m
    build-up rate 0.32 (°)/(30 m)
    horizontal section 265 m
    gas kick velocity 0.014 m3/s
    drilling fluid density 1.7 g/cm3
    drilling fluid displacement 25 L/s
    well killing fluid density 1.766 g/cm3
    kill fluid displacement 25 L/s
    geothermal gradient 0.026 ℃/m
    下载: 导出CSV

    表  2  柴达木盆地某溢流井基础信息表

    Table  2.   Basic information of an overflow well in Qaidam Basin

    parameter value unit
    the straight well depth 4 933 m
    gas velocity kick 0.008 3 m3/s
    drilling fluid density 2.39 g/cm3
    drilling fluid displacement 27 L/s
    well killing fluid density 2.42 g/cm3
    kill fluid displacement 30 L/s
    geothermal gradient 0.026 ℃/m
    下载: 导出CSV
  • [1] 李琪, 何华灿, 张绍槐. 复杂地质条件下复杂结构井的钻井优化方案研究[J]. 石油学报, 2004, 25 (4): 80-83.

    LI Qi, HE Huacan, ZHANG Shaohuai. Optimum drilling program for complex well under complex geological condition[J]. Acta Petrolei Sinica, 2004, 25 (4): 80-83. (in Chinese)
    [2] 周英杰. 胜利油田特殊结构井开发技术新进展[J]. 石油勘探与开发, 2008, 35 (3): 318-329. doi: 10.3321/j.issn:1000-0747.2008.03.009

    ZHOU Yingjie. Advances on special structure drilling development techniques in Shengli Oilfield[J]. Petroleum Exploration and Development, 2008, 35 (3): 318-329. (in Chinese) doi: 10.3321/j.issn:1000-0747.2008.03.009
    [3] 任文希, 李皋, 孟英峰, 等. 特殊结构井井眼净化工具研究新进展[J]. 石油矿场机械, 2015, 44 (4): 1-5.

    REN Wenxi, LI Gao, MENG Yingfeng, et al. Current development of hole cleaning tool in special structure well[J]. Oil Field Equipment, 2015, 44 (4): 1-5. (in Chinese)
    [4] 伍贤柱, 胡旭光, 韩烈祥, 等. 井控技术研究进展与展望[J]. 天然气工业, 2022, 42 (2): 133-142.

    WU Xianzhu, HU Xuguang, HAN Liexiang, et al. Research progress and prospect of well control technology[J]. Natural Gas Industry, 2022, 42 (2): 133-142. (in Chinese)
    [5] 赵德林, 赵勇华, 滑辉, 等. 特殊结构井防砂技术研究与应用[J]. 内蒙古石油化工, 2012, 38 (1): 109-111.

    ZHAO Delin, ZHAO Yonghua, HUA Hui, et al. Research and application of sand control technology for wells with special structure[J]. Inner Mongolia Petrochemical Industry, 2012, 38 (1): 109-111. (in Chinese)
    [6] 高德利, 黄文君, 刁斌斌, 等. 复杂结构井定向钻井技术现状及展望[J]. 前瞻科技, 2023, 2 (2): 11-21.

    GAO Deli, HUANG Wenjun, DIAO Binbin, et al. Current status and prospect of directional drilling technologies for complex wells[J]. Science and Technology Foresight, 2023, 2 (2): 11-21. (in Chinese)
    [7] 刘文升. 复杂结构井关键技术发展[J]. 中国科技信息, 2022(24): 66-67.

    LIU Wensheng. Development of key technologies for wells with complex structures[J]. China Science and Technology Information, 2022(24): 66-67. (in Chinese)
    [8] BLOUNT E M, SOEⅡNAH E. Dynamic kill: controlling wild wells a new way[J]. World Oil, 1981, 193 : 5.
    [9] WATSON W D, MOORE P. Momentum kill procedure can quickly control blowouts[J/OL]. Oil and Gas Journal, 1993[2024-07-15]. https://api.semanticscholar.org/CorpusID:107291828.
    [10] 刘凯. 气井超重泥浆司钻法压井[J]. 天然气工业, 1988(2): 59-68.

    LIU Kai. Gas well drilling with heavy mud driller method[J]. Natural Gas Industry, 1988(2): 59-68. (in Chinese)
    [11] 刘凯. 压井计算方法的改进[J]. 西南石油学院学报, 1989, 11 (1): 58-66.

    LIU Kai. Improvement on killing well calculation[J]. Journal of Southwest Petroleum Institute, 1989, 11 (1): 58-66. (in Chinese)
    [12] 范军, 施太和. 气井动态井控模型及计算机仿真[J]. 天然气工业, 1998, 18 (4): 58-61.

    FAN Jun, SHI Taihe. Dynamic well control model and computer simulation of gas well[J]. Natural Gas Industry, 1998, 18 (4): 58-61. (in Chinese)
    [13] 庞华. 深水钻井气侵井控风险分析[D]. 东营: 中国石油大学(华东), 2015.

    PANG Hua. Risk analysis of gas invasion well control in deepwater drilling[D]. Dongying: China University of Petroleum (Huadong), 2015. (in Chinese)
    [14] 付建红, 冯剑, 陈平, 等. 深水动态压井钻井井筒压力模拟[J]. 石油学报, 2015, 36 (2): 232-237.

    FU Jianhong, FENG Jian, CHEN Ping, et al. Simulation on wellbore pressure during dynamic kill drilling in deep water[J]. Acta Petrolei Sinica, 2015, 36 (2): 232-237. (in Chinese)
    [15] 付建红. 深水钻井溢流监测与井控技术研究[D]. 成都: 西南石油大学, 2016.

    FU Jianhong. Study on overflow monitoring and well control technology of deepwater drilling[D]. Chengdu: Southwest Petroleum University, 2016. (in Chinese)
    [16] 李治, 魏攀峰, 吕建, 等. 天然气井绒囊流体活塞技术不降压压井工艺[J]. 天然气工业, 2018, 38 (2): 90-96.

    LI Zhi, WEI Panfeng, LV Jian, et al. A gas well killing process without pressure release based on the fuzzy-ball fluid piston technology[J]. Natural Gas Industry, 2018, 38 (2): 90-96. (in Chinese)
    [17] 孙宝江, 孙小辉, 娄文强. 深水油气钻采井筒多相流动理论前沿问题研究进展[C]//第三十一届全国水动力学研讨会. 厦门, 2020: 7.

    SUN Baojiang, SUN Xiaohui, LOU Wenqiang. Research progress on the theoretical frontiers of multiphase flow in deepwater oil and gas drilling and production wells[C]//The 31 st National Symposium on Hydrodynamic. Xiamen, 2020: 7. (in Chinese)
    [18] 孙宝江, 王雪瑞, 孙小辉, 等. 井筒四相流动理论在深水钻完井工程与测试领域的应用与展望[J]. 天然气工业, 2020, 40 (12): 95-105.

    SUN Baojiang, WANG Xuerui, SUN Xiaohui, et al. Application and prospect of the wellbore four-phase flow theory in the field of deepwater drilling and completion engineering and testing[J]. Natural Gas Industry, 2020, 40 (12): 95-105. (in Chinese)
    [19] 王江帅, 李军, 何岩峰, 等. 变梯度控压钻井井控过程中井口回压变化规律[J]. 石油学报, 2021, 42 (11): 1499-1505.

    WANG Jiangshuai, LI Jun, HE Yanfeng, et al. Variation law of wellhead back pressure under well control during variable gradient managed pressure drilling[J]. Acta Petrolei Sinica, 2021, 42 (11): 1499-1505. (in Chinese)
    [20] 郑如森, 高文祥, 王磊, 等. 塔里木油田高压气井压井技术[J]. 油气井测试, 2021, 30 (2): 30-33.

    ZHENG Rusen, GAO Wenxiang, WANG Lei, et al. Well killing technology for high pressure gas wells in Tarim Oilfield[J]. Well Testing, 2021, 30 (2): 30-33. (in Chinese)
    [21] 袁征. 节流压井套压控制精确计算方法[D]. 成都: 西南石油大学, 2015.

    YUAN Zheng. Accurate calculation method of casing pressure control for throttling and killing well[D]. Chengdu: Southwest Petroleum University, 2015. (in Chinese)
    [22] 何玉发, 刘清友. 深井注入管柱力学行为研究[C]//中国力学学会学术大会'2009论文摘要集. 郑州, 2009: 476-477.

    HE Yufa, LIU Qingyou. Study on mechanical behavior of injection string in deep well[C]//Proceedings of the 2009 Academic Conference of the Chinese Society of Theoretical and Applied Mechanics: Abstracts. Zhenzhou, 2009: 476-477. (in Chinese)
    [23] 蒋希文. 钻井事故与复杂问题[M]. 2版. 北京: 石油工业出版社, 2002.

    JIANG Xiwen. Drilling Accidents and Complex Problems[M]. 2nd ed. Beijing: Petroleum Industry Press, 2002. (in Chinese)
    [24] 曾明昌, 高自力, 郑述全, 等. 气井最高允许关井压力确定及钻井现场几个井控问题研究[J]. 天然气工业, 2005, 25 (11): 45-47.

    ZENG Mingchang, GAO Zili, ZHENG Shuquan, et al. Highest shut-in pressure allowed by gas well and some well-control problems in drilling site[J]. Natural Gas Industry, 2005, 25 (11): 45-47. (in Chinese)
    [25] 毛良杰, 张孝诚, 薛继彪, 等. 隔水管注气双梯度钻井井筒参数计算研究[J]. 应用数学和力学, 2022, 43 (4): 401-415. doi: 10.21656/1000-0887.420065

    MAO Liangjie, ZHANG Xiaocheng, XUE Jibiao, et al. Research on calculation of riser gas injection dual-gradient drilling wellbore parameters[J]. Applied Mathematics and Mechanics, 2022, 43 (4): 401-415. (in Chinese) doi: 10.21656/1000-0887.420065
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  26
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-07-15
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回