留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于牵制触发控制动态网络的有限时间镇定

赵玮 任凤丽

赵玮, 任凤丽. 基于牵制触发控制动态网络的有限时间镇定[J]. 应用数学和力学, 2025, 46(3): 382-393. doi: 10.21656/1000-0887.450072
引用本文: 赵玮, 任凤丽. 基于牵制触发控制动态网络的有限时间镇定[J]. 应用数学和力学, 2025, 46(3): 382-393. doi: 10.21656/1000-0887.450072
ZHAO Wei, REN Fengli. Finite Time Stabilization of Dynamical Networks Under Pinning Event-Triggered Control[J]. Applied Mathematics and Mechanics, 2025, 46(3): 382-393. doi: 10.21656/1000-0887.450072
Citation: ZHAO Wei, REN Fengli. Finite Time Stabilization of Dynamical Networks Under Pinning Event-Triggered Control[J]. Applied Mathematics and Mechanics, 2025, 46(3): 382-393. doi: 10.21656/1000-0887.450072

基于牵制触发控制动态网络的有限时间镇定

doi: 10.21656/1000-0887.450072
基金项目: 

国家自然科学基金(61104031)

详细信息
    作者简介:

    赵玮(1995—),男,硕士(E-mail: wzhao960@163.com);任凤丽(1978—),女,副教授,博士(通讯作者. E-mail: flren@nuaa.edu.cn).

    通讯作者:

    任凤丽(1978—),女,副教授,博士(通讯作者. E-mail: flren@nuaa.edu.cn).

  • 中图分类号: O357.41

Finite Time Stabilization of Dynamical Networks Under Pinning Event-Triggered Control

Funds: 

The National Science Foundation of China(61104031)

  • 摘要: 该文研究了基于牵制触发控制动态网络的有限时间镇定.不同于已有结果有限时间事件触发镇定,考虑到控制成本和控制大规模节点数目的困难性,提出了牵制自适应事件触发控制保证动态网络的有限时间镇定.由于动态网络系统存在维数高的问题,分析牵制事件触发有限时间镇定相当困难.通过设计恰当的协议,借助Lyapunov稳定性理论,得到了动态耦合网络有限时间镇定的充分性条件.最后,通过数值仿真验证了定理的有效性.
  • CORTES J, BULLO F. Coordination and geometric optimization via distributed dynamical systems[J]. SIAM Journal on Control and Optimization,2005,44(5): 1543-1574.
    [2]REN W. Multi-vehicle consensus with a time-varying reference state[J]. Systems & Control Letters,2007,56(7/8): 474-483.
    [3]SMITH T R, HANSSMANN H, LEONARD N E. Orientation control of multiple underwater vehicles with symmetry-breaking potentials[C]//Proceedings of the 40th IEEE Conference on Decision and Control.Orlando, FL, USA, 2001: 4598-4603.
    [4]BHAT S P, BERNSTEIN D S. Finite-time stability of homogeneous systems[C]//Proceedings of the 1997 American Control Conference. Albuquerque, NM, USA, 1997.
    [5]BHAT S P, BERNSTEIN D S. Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria[J]. SIAM Journal on Control and Optimization,2003,42(5): 1745-1775.
    [6]LU W, LIU X, CHEN T. A note on finite-time and fixed-time stability[J]. Neural Networks,2016,81: 11-15.
    [7]ZIMENKO K, EFIMOV D, POLYAKOV A. On condition for output finite-time stability and adaptive finite-time control scheme[C]//2019 IEEE 58th Conference on Decision and Control (CDC). Nice, France, 2019.
    [8]HADDAD W M, LEE J. Finite-time stabilization and optimal feedback control for nonlinear discrete-time systems[J]. IEEE Transactions on Automatic Control,2023,68(3): 1685-1691.
    [9]赵玮, 任凤丽. 基于自适应控制的四元数时滞神经网络的有限时间同步[J]. 应用数学和力学, 2022,43(1): 94-103. (ZHAO Wei, REN Fengli. Finite time adaptive synchronization of quaternion-value neural networks with time delays[J]. Applied Mathematics and Mechanics,2022,43(1): 94-103. (in Chinese))
    [10]HONG Y, WANG J, CHENG D. Adaptive finite-time control of nonlinear systems with parametric uncertainty[J]. IEEE Transactions on Automatic Control,2006,51(5): 858-862.
    [11]IERVOLINO R, AMBROSINO R. Finite-time stabilization of state dependent impulsive dynamical linear systems[J]. Nonlinear Analysis: Hybrid Systems,2023,47: 101305.
    [12]WU F, LI C, LIAN J. Finite-time stability of switched nonlinear systems with state jumps: a dwell-time method[J]. IEEE Transactions on Systems,Man,and Cybernetics: Systems,2008,52: 6061-6072.
    [13]赵玮, 任凤丽. 基于牵制控制的多智能体系统的有限时间与固定时间一致性[J]. 应用数学和力学, 2021,42(3): 299-307. (ZHAO Wei, REN Fengli. Finite-time and fixed-time consensus for multi-agent systems via pinning control[J]. Applied Mathematics and Mechanics,2021,42(3): 299-307. (in Chinese))
    [14]LIN X, CHEN C C. Finite-time output feedback stabilization of planar switched systems with/without an output constraint[J]. Automatica,2021,131: 109728.
    [15]LI S, DU H, LIN X. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics[J]. Automatica,2011,47(8): 1706-1712.
    [16]CHEN T, LU W, LIU X. Finite time convergence of pinning synchronization with a single nonlinear controller[J]. Neural Networks,2021,143: 246-249.
    [17]CHEN G, LEWIS F L, XIE L. Finite-time distributed consensusviabinary control protocols[J]. Automatica,2011,47(9): 1962-1968.
    [18]MATUSIK R, NOWAKOWSKI A, PLASKACZ S, et al. Finite-time stability for differential inclusions with applications to neural networks[J]. SIAM Journal on Control and Optimization,2020,58(5): 2854-2870.
    [19]CAO Y, REN W, MENG Z. Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking[J]. Systems & Control Letters,2010,59(9): 522-529.
    [20]HU B, GUAN Z H, FU M. Distributed event-driven control for finite-time consensus[J]. Automatica,2019,103: 88-95.
    [21]WU L, LIU K, L J, et al. Finite-time adaptive stability of gene regulatory networks[J]. Neurocomputing,2019,338: 222-232.
    [22]HUANG J, WEN C, WANG W, et al. Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems[J]. Automatica,2015,51: 292-301.
    [23]TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control,2007,52(9): 1680-1685.
    [24]WANG X, LEMMON M D. Event design in event-triggered feedback control systems[C]//2008 47th IEEE Conference on Decision and Control.Cancun, Mexico, 2008: 2105-2110.
    [25]DIMAROGONAS D V, FRAZZOLI E, JOHANSSON K H. Distributed event-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control,2012,57(5): 1291-1297.
    [26]GHODRAT M, MARQUEZ H J. A new Lyapunov-based event-triggered control of linear systems[J]. IEEE Transactions on Automatic Control,2023,68(4): 2599-2606.
    [27]LI H, LIAO X, HUANG T, et al. Event-triggering sampling based leader-following consensus in second-order multi-agent systems[J]. IEEE Transactions on Automatic Control,2015,60(7): 1998-2003.
    [28]HE W, XU B, HAN Q L, et al. Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies[J]. IEEE Transactions on Cybernetics,2019,50(7): 2996-3008.
    [29]SUN Q, CHEN J, SHI Y. Event-triggered robust MPC of nonlinear cyber-physical systems against DoS attacks[J]. Science China Information Sciences,2021,65(1): 110202.
    [30]SHEN J, CAO J. Finite-time synchronization of coupled neural networksviadiscontinuous controllers[J]. Cognitive Neurodynamics,2011,5(4): 373-385.
    [31]LU W, CHEN T. New approach to synchronization analysis of linearly coupled ordinary differential systems[J]. Physica D: Nonlinear Phenomena,2006,213(2): 214-230.
    [32]HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.
    [33]YU W W, CHEN G R, L J H, et al. Synchronization via pinning control on general complex networks[J]. SIAM Journal on Control and Optimization,2013,51(2): 21395-21416.
    [34]ZOU F, NOSSEK J A. Bifurcation and chaos in cellular neural networks[J]. IEEE Transactions on Circuits and Systems : Fundamental Theory and Applications,1993,40(3): 166-173.
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 修回日期:  2024-05-22
  • 网络出版日期:  2025-04-02
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回