留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强韧仿生螺旋复合材料超结构设计与分析

王昕 李振 季海波 杨宏俊 李秉洋 王鹏飞

王昕, 李振, 季海波, 杨宏俊, 李秉洋, 王鹏飞. 高强韧仿生螺旋复合材料超结构设计与分析[J]. 应用数学和力学, 2024, 45(8): 1106-1116. doi: 10.21656/1000-0887.450103
引用本文: 王昕, 李振, 季海波, 杨宏俊, 李秉洋, 王鹏飞. 高强韧仿生螺旋复合材料超结构设计与分析[J]. 应用数学和力学, 2024, 45(8): 1106-1116. doi: 10.21656/1000-0887.450103
WANG Xin, LI Zhen, JI Haibo, YANG Hongjun, LI Bingyang, WANG Pengfei. Design and Analysis of High Strength and Toughness Bio-Inspired Helicoidal Composite Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1106-1116. doi: 10.21656/1000-0887.450103
Citation: WANG Xin, LI Zhen, JI Haibo, YANG Hongjun, LI Bingyang, WANG Pengfei. Design and Analysis of High Strength and Toughness Bio-Inspired Helicoidal Composite Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1106-1116. doi: 10.21656/1000-0887.450103

高强韧仿生螺旋复合材料超结构设计与分析

doi: 10.21656/1000-0887.450103
基金项目: 

国家自然科学基金 12402407

国家自然科学基金 U22B2013

北京市科技新星项目 20230484287

详细信息
    作者简介:

    王昕(1994—),男,工程师,博士(E-mail: wxtj_9449@163.com)

    通讯作者:

    李秉洋(1989—),男,高级工程师,硕士(通迅作者. E-mail: libingyang@stu.pku.edu.cn)

    王鹏飞(1985—),男,研究员,博士(通迅作者. E-mail: hvhe@163.com)

  • 中图分类号: V25

Design and Analysis of High Strength and Toughness Bio-Inspired Helicoidal Composite Metastructures

  • 摘要: 随着人类航天活动的日益频繁,轨道空间环境不断恶化,提升航天器结构强度和韧性具有重要的现实意义. 该文设计了具有中面对称特性的高强韧仿生螺旋复合材料超结构,开发了相应的热压制备工艺. 通过准静态压痕性能测试,以荷载-位移曲线、峰值力、失效位移、刚度与能量吸收为关键力学指标,分别在37层与73层下对正交、准各向同性以及5°,10°,20°螺旋铺层的碳纤维增强复合材料(carbon fibre reinforced polymer, CFRP)超结构进行了性能表征,并分析了破坏模式与失效机理. 研究结果表明:相较于传统铺层方法,采用对称螺旋铺层方式能够有效减小层间应力,显著提升超结构的准静态压痕性能;尤其是当螺旋角设定为10°时,超结构在峰值载荷和能量吸收方面得到了卓越的性能提升. 该研究成果不仅为航天领域内高性能复合材料超结构的设计与制造提供了理论支持,同时也为其实际应用奠定了实践基础.
  • 图  1  碳纤维增强复合材料在航天器中的应用

    Figure  1.  Carbon fibre reinforced polymers in spacecraft applications

    图  2  仿生螺旋复合材料超结构制备工艺流程

    Figure  2.  The preparation procedure of bio-inspired helicoidal composite metastructures

    图  3  仿生螺旋复合材料超结构的准静态压痕测试设置

    Figure  3.  The quasi-static indentation test setup for bio-inspired helicoidal composite metastructures

    图  4  仿生螺旋复合材料超结构载荷-位移曲线

    Figure  4.  Load-displacement curves of bio-inspired helicoidal composite metastructures

    图  5  37层仿生螺旋复合材料超结构的失效位移、峰值力、刚度与能量吸收

    Figure  5.  Failure displacements, peak forces, stiffnesses and energy absorptions of 37-ply bio-inspired helicoidal composite metastructures

    图  6  73层仿生螺旋复合材料超结构的失效位移、峰值力、刚度与能量吸收

      为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  6.  Failure displacements, peak forces, stiffnesses and energy absorptions of 73-ply bio-inspired helicoidal composite metastructures

    图  7  37层仿生螺旋复合材料超结构的破坏模式

    Figure  7.  Damage modes of 37-ply bio-inspired helicoidal composite metastructures

    图  8  73层仿生螺旋复合材料超结构的破坏模式

    Figure  8.  Damage modes of 73-ply bio-inspired helicoidal composite metastructures

  • [1] 吴伟仁, 于登云, 刘继忠, 等. 我国太空活动现代化治理中的若干重大问题[J]. 科学通报, 2021, 66(15): 1795-1801.

    WU Weiren, YU Dengyun, LIU Jizhong, et al. Key issues of modernization of space governance[J]. Science China Press, 2021, 66(15): 1795-1801. (in Chinese)
    [2] 龚自正, 赵秋艳, 李明, 等. 空间碎片防护研究前沿问题与展望[J]. 空间碎片研究, 2019, 19(3): 2-13.

    GONG Zizheng, ZHAO Qiuyan, LI Ming, et al. The frontier problem and prospect of space debris protection research[J]. Space Debris Research, 2019, 19(3): 2-13. (in Chinese)
    [3] 汤靖师, 程昊文. 空间碎片问题的起源、现状和发展[J]. 物理, 2021, 50(5): 317-323.

    TANG Jingshi, CHENG Haowen. The origin, status and future of space debris[J]. Physics, 2021, 50(5): 317-323. (in Chinese)
    [4] 黄亿洲, 王志瑾, 刘格菲. 碳纤维增强复合材料在航空航天领域的应用[J]. 西安航空学院学报, 2021, 39(5): 44-51.

    HUANG Yizhou, WANG Zhijin, LIU Gefei. Application of carbon fiber reinforced composite in aerospace[J]. Journal of Xi'an Aeronautical University, 2021, 39(5): 44-51. (in Chinese)
    [5] 江洪, 彭导琦. 先进复合材料在航天航空器中的应用[J]. 新材料产业, 2022(1): 2-7.

    JIANG Hong, PENG Daoqi. Application of advanced composition materials in aerospace[J]. Advanced Materials Industry, 2022(1): 2-7. (in Chinese)
    [6] 李玉峰, 李玲丽, 潘宗友. 一种卫星用钛内衬-碳纤维缠绕复合材料气瓶特性研究[J]. 宇航学报, 2014, 35(11): 1318-1325.

    LI Yufeng, LI Lingli, PAN Zongyou. Characteristic study on titanium-liner/carbon-fiber overwrapped vessels on the satellite[J]. Journal of Astronautics, 2014, 35(11): 1318-1325. (in Chinese)
    [7] 郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报, 2022, 39(8): 3674-3683.

    ZHENG Hao, LI Yan, TU Haoyun. Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3674-3683. (in Chinese)
    [8] 刘晓军, 战丽, 邹爱玲, 等. 纤维增强复合材料层间增韧技术研究进展[J]. 复合材料科学与工程, 2022(1): 117-128.

    LIU Xiaojun, ZHAN Li, ZOU Ailing, et al. Research progress on interlaminar toughening technology of fiber reinforced composites[J]. Journal Composites Science and Engineering, 2022(1): 117-128. (in Chinese)
    [9] GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia, 2014, 10(9): 3997-4008.
    [10] YARAGHI N A, GUARíN-ZAPATA N, GRUNENFELDER L K, et al. A sinusoidally architected helicoidal biocomposite[J]. Advanced Materials, 2016, 28(32): 6835-6844.
    [11] HUANG W, SHISHEHBOR M, GUARÍN-ZAPATA N, et al. A natural impact-resistant bicontinuous composite nanoparticle coating[J]. Nature Materials, 2020, 19: 1236-1243.
    [12] GRUNENFELDER L K, MILLIRON G, HERRERA S, et al. Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles[J]. Advanced Materials, 2018, 30(9): 1705295.
    [13] FABRITIUS H O, SACHS C, TRIGUERO P R, et al. Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus[J]. Advanced Materials, 2009, 21(4): 391-400.
    [14] RAABE D, SACHS C, ROMANO P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material[J]. Acta Materialia, 2005, 53(15): 4281-4292.
    [15] CHENG L, WANG L, KARLSSON A M. Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior[J]. Journal of Materials Research, 2008, 23(11): 2854-2872.
    [16] BOßELMANN F, ROMANO P, FABRITIUS H, et al. The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus[J]. Thermochimica Acta, 2007, 463(1/2): 65-68.
    [17] CHEN P Y, LIN A Y M, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia, 2008, 4(3): 587-596.
    [18] YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology, 2021, 205: 108650.
    [19] ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4(1): 1-7.
    [20] CHENG L, WANG L, KARLSSON A M. Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica[J]. Journal of Materials Research, 2009, 24: 3253-3267.
    [21] RAABE D, ROMANO P, SACHS C, et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue[J]. Journal of Crystal Growth, 2005, 283(1/2): 1-7.
    [22] CHEN B, PENG X, CAI C, et al. Helicoidal microstructure of Scarabaei cuticle and biomimetic research[J]. Materials Science and Engineering A, 2006, 423(1/2): 237-242.
    [23] BOULIGAND Y. Sur une architecture torsade répandue dans de nombreuses cuticules d'Arthropodes[J]. CR Acad Sci, 1965, 261: 3665-3668.
    [24] WANG M, LI L, NIU S C, et al. Fiber arrangement endow compression resistance of the mantis shrimp hammer-like appendage[J]. Journal of Materials Research and Technology, 2022, 21: 3169-3180.
    [25] LIU J L, LEE H P, TAN V B C. Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 165: 282-289.
    [26] LIU J L, LEE H P, KONG S H R, et al. Improving laminates through non-uniform inter-ply angles[J]. Composites (Part A): Applied Science and Manufacturing, 2019, 127: 105625.
    [27] LIU J L, LEE H P, LAI K S, et al. Bio-inspired laminates of different material systems[J]. Journal of Applied Mechanics, 2020, 87(3): 031007.
    [28] LIU J L, LEE H P, TAN V B C. Failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 157: 99-106.
    [29] LIU J L, LIM E W L, SUN Z P, et al. Improving strength and impact resistance of 3D printed components with helicoidal printing direction[J]. International Journal of Impact Engineering, 2022, 169: 104320.
    [30] YIN S, CHEN H, YANG R, et al. Tough nature-inspired helicoidal composites with printing-induced voids[J]. Cell Reports Physical Science, 2020, 1(7): 100109.
    [31] YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology, 2021, 205: 108650.
    [32] 王欢, 欧阳文婷, 彭华新, 等. 一种仿生复合材料螺旋铺层设计方法: CN110962364B[P]. 2021-03-26.

    WANG Huan, OUYANG Wenting, PENG Huaxin, et al. A design method for spiral layering of biomimetic composite materials: CN110962364B[P]. 2021-03-26. (in Chinese)
  • 加载中
图(8)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  108
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-07-04
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回