留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负Poisson比热电器件的热-电-力耦合弯曲特征及强度分析

崔有江 刘超 陈家鹏 王彪 王保林

崔有江, 刘超, 陈家鹏, 王彪, 王保林. 负Poisson比热电器件的热-电-力耦合弯曲特征及强度分析[J]. 应用数学和力学, 2024, 45(10): 1243-1255. doi: 10.21656/1000-0887.450113
引用本文: 崔有江, 刘超, 陈家鹏, 王彪, 王保林. 负Poisson比热电器件的热-电-力耦合弯曲特征及强度分析[J]. 应用数学和力学, 2024, 45(10): 1243-1255. doi: 10.21656/1000-0887.450113
CUI Youjiang, LIU Chao, CHEN Jiapeng, WANG Biao, WANG Baolin. Thermo-Electric-Mechanical Coupling Bending Property and Strength Analyses of Thermoelectric Devices With the Negative Poisson’s Ratio Architecture[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1243-1255. doi: 10.21656/1000-0887.450113
Citation: CUI Youjiang, LIU Chao, CHEN Jiapeng, WANG Biao, WANG Baolin. Thermo-Electric-Mechanical Coupling Bending Property and Strength Analyses of Thermoelectric Devices With the Negative Poisson’s Ratio Architecture[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1243-1255. doi: 10.21656/1000-0887.450113

负Poisson比热电器件的热-电-力耦合弯曲特征及强度分析

doi: 10.21656/1000-0887.450113
基金项目: 

国家自然科学基金(12102104);广东省基础与应用基础研究基金(2022A1515240072;2022B1515020099;2022A1515010801;2023A1515240053)

详细信息
    作者简介:

    崔有江(1990—),男,副研究员,博士(E-mail: cuiyoujiang@dgut.edu.cn);王彪(1968—),男,教授,博士,博士生导师(通讯作者. E-mail: wangbiao@mail.sysu.edu.cn);王保林(1968—),男,教授,博士,博士生导师(通讯作者. E-mail: wangbl@hit.edu.cn).

    通讯作者:

    王彪(1968—),男,教授,博士,博士生导师(通讯作者. E-mail: wangbiao@mail.sysu.edu.cn).

  • 中图分类号: O341

Thermo-Electric-Mechanical Coupling Bending Property and Strength Analyses of Thermoelectric Devices With the Negative Poisson’s Ratio Architecture

Funds: 

The National Science Foundation of China(12102104)

  • 摘要: 随着智能可穿戴设备的快速发展,对供电元件的续航时间、便捷性以及轻量化等提出了更高要求.热电器件可以直接将人体新陈代谢释放的热能转换为电能,为可穿戴设备持续供电.利用整体-局部、细观-宏观相结合的分析方法,该文研究了负Poisson比热电器件的热-电-力耦合弯曲行为及其强度失效问题.首先,通过建立负Poisson比热电器件的均质化分析模型,获取了器件的宏观弯曲特征,并给出了应力最大的截面.然后,建立热电蜂窝的受力分析模型,利用热力学强度理论导出了胞壁的细观强度失效临界荷载.研究发现:热电蜂窝的应力水平随着内凹角增大呈现先减小后增加的趋势;对于负Poisson比热电蜂窝,强度失效首先发生在中间部位;对于传统的六边形热电蜂窝,端部比中间部位先发生强度破坏;热电器件发生断裂破坏时,中间和端部的临界裂纹长度近似相等,可以拟合为内凹角的指数函数.
  • [2]崔有江, 王保林, 王开发. 多孔泡沫热电器件断裂及其对能量转化性能的影响规律研究[J]. 应用数学和力学, 2023,44(11): 1291-1298.(CUI Youjiang, WANG Baolin, WANG Kaifa. Evaluation of fracture and its effects on energy conversion performance of porous foam thermoelectric generators[J].Applied Mathematics and Mechanics,2023,44(11): 1291-1298.(in Chinese))
    JIANG F, ZHOU X, LV J, et al. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting[J].Advanced Materials,2022,34(17): 2200042.
    [3]SHI X L, SUN S, WU T, et al. Weavable thermoelectrics: advances, controversies, and future developments[J].Materials Futures,2024,3(1): 012103.
    [4]YANG Y, DENG H, FU Q. Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices[J].Materials Chemistry Frontiers,2020,4(11): 3130-3152.
    [5]SUN T T, ZHOU B Y, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J].Nature Communications,2020,11(1): 572.
    [6]NAN K W, KANG S D, LI K, et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices[J].Science Advances,2018,4(11): eaau5849.
    [7]KONG D Y, ZHU W, GUO Z P, et al. High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting[J].Energy,2019,175: 292-299.
    [8]ZHAO X, ZHAO C S, JIANG Y F, et al. Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices[J].Journal of Power Sources,2020,479: 229044.
    [9]KARTHIKEYAN V, SURJADI J U, WONG J C K, et al. Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting[J].Journal of Power Sources,2020,455: 227983.
    [10]CUI Y J, WANG B L, WANG P. Analysis of thermally induced delamination and buckling of thin-film thermoelectric generators made up of pn-junctions[J].International Journal of Mechanical Sciences,2018,149: 393-401.
    [11]KOGO G, XIAO B, DANQUAH S, et al. A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask[J].Scientific Reports,2020,10(1): 1067.
    [12]ROJAS J P, SINGH D, CONCHOUSO D, et al. Stretchable helical architecture inorganic-organic hetero thermoelectric generator[J].Nano Energy,2016,30: 691-699.
    [13]XU X J, ZUO Y, CAI S, et al. Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices[J].Journal of Materials Chemistry C,2018,6(18): 4866-4872.
    [14]FENG R, TANG F, ZHANG N, et al. Flexible, high-power density, wearable thermoelectric nanogenerator and self-powered temperature sensor[J].ACS Applied Materials & Interfaces,2019,11(42): 38616-38624.
    [15]LEE G, KIM C S, KIM S, et al. Flexible heatsink based on a phase-change material for a wearable thermoelectric generator[J].Energy,2019,179: 12-18.
    [16]FUKUIE K, IWATA Y, IWASE E. Design of substrate stretchability using origami-like folding deformation for flexible thermoelectric generator[J].Micromachines,2018,9(7): 315.
    [17]PARK H, LEE D, KIM D, et al. High power output from body heat harvesting based on flexible thermoelectric system with low thermal contact resistance[J].Journal of Physics D:Applied Physics,2018,51(36): 365501.
    [18]周世奇, 侯秀慧, 邓子辰. 一般宏观应力状态下凹角蜂窝结构的屈曲性能分析[J]. 应用数学和力学, 2023,44(1): 12-24.(ZHOU Shiqi, HOU Xiuhui, DENG Zichen. Buckling analysis of re-entrant honeycomb structures under general macroscopic stress states[J].Applied Mathematics and Mechanics,2023,44(1): 12-24.(in Chinese))
    [19]CUI Y J, LIU C, WANG K F, et al. Effect of negative Poisson’s ratio architecture on fatigue life and output power of flexible wearable thermoelectric generators[J].Engineering Fracture Mechanics,2023,281: 109142.
    [20]CUI Y J, LI W J, WANG K F, et al. Thermal shock fracture of honeycomb-based porous thermoelectric materials with non-Fourier heat conduction[J].Ceramics International,2024,50(1): 2151-2161.
    [21]CUI Y J, WANG B L, WANG K F, et al. An analytical model to evaluate influence of negative Poisson’s ratio architecture on fatigue life and energy conversion performance of wearable thermoelectric generator[J].International Journal of Solids and Structures,2022,258: 112000.
    [22]WE J H, KIM S J, CHO B J. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator[J].Energy,2014,73: 506-512.
    [23]HU J S, WANG B L, HIRAKATA H, et al. Interfacial thermal damage and fatigue between auxetic honeycomb sandwich and underneath substrate[J].International Journal of Solids and Structures,2023,279: 112364.
    [24]PENG J, LI D K, HUANG Z X, et al. Interfacial behavior of a thermoelectric film bonded to a graded substrate[J].Applied Mathematics and Mechanics(English Edition),2023,44(11): 1853-1870.
    [25]MIAO X Y, LI C F, PAN Y C. Research on the dynamic characteristics of rotating metal-ceramic matrix DFG-CNTRC thin laminated shell with arbitrary boundary conditions[J].Thin-Walled Structures,2022,179: 109475.
    [26]王彪. 热力学强度理论[J]. 力学进展, 2023,53(3): 693-712.(WANG Biao. Thermodynamic strength theory (TST)[J].Advances in Mechanics,2023,53(3): 693-712.(in Chinese))
    [27]WANG B. The principle of virtual energy for predicting the strength of material structures[J].Engineering Fracture Mechanics,2024,300: 109997.
    [28]JANSSEN M, ZUIDEMA J, WANHILL R J H.Fracture Mechanics[M]. 2nd ed. London: Spon Press, 2004: 83-106.
    [29]蒋玉川, 蒲淳清. 用Westergaard应力函数求解Ⅰ-Ⅱ复合型平面裂纹问题的研讨[J]. 力学与实践, 2020,42(4): 504-507.(JIANG Yuchuan, PU Chunqing. The problem of Ⅰ-Ⅱ combined plane crack solved with Westergaard stress function[J].Mechanics in Engineering,2020,42(4): 504-507.(in Chinese))
  • 加载中
计量
  • 文章访问数:  124
  • HTML全文浏览量:  48
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 修回日期:  2024-05-14
  • 网络出版日期:  2024-10-31
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回