留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

持续性高过载下人脑的多孔弹性响应

田金 刘少宝 卢天健 徐峰

田金, 刘少宝, 卢天健, 徐峰. 持续性高过载下人脑的多孔弹性响应[J]. 应用数学和力学, 2024, 45(6): 691-709. doi: 10.21656/1000-0887.450130
引用本文: 田金, 刘少宝, 卢天健, 徐峰. 持续性高过载下人脑的多孔弹性响应[J]. 应用数学和力学, 2024, 45(6): 691-709. doi: 10.21656/1000-0887.450130
TIAN Jin, LIU Shaobao, LU Tianjian, XU Feng. Poroelastic Responses of Human Brain Under Sustained High Overloads[J]. Applied Mathematics and Mechanics, 2024, 45(6): 691-709. doi: 10.21656/1000-0887.450130
Citation: TIAN Jin, LIU Shaobao, LU Tianjian, XU Feng. Poroelastic Responses of Human Brain Under Sustained High Overloads[J]. Applied Mathematics and Mechanics, 2024, 45(6): 691-709. doi: 10.21656/1000-0887.450130

持续性高过载下人脑的多孔弹性响应

doi: 10.21656/1000-0887.450130
详细信息
    作者简介:

    田金(1993—),男,助理教授,博士(E-mail: jintian@xjtu.edu.cn)

    通讯作者:

    徐峰(1980—),男,教授,博士,博士生导师(通讯作者. E-mail: fengxu@mail.xjtu.edu.cn)

  • (我刊编委刘少宝、卢天健来稿)
  • 中图分类号: O34

Poroelastic Responses of Human Brain Under Sustained High Overloads

  • (Contributed by LIU Shaobao, LU Tianjian, M. AMM Editorial Board)
  • 摘要:

    航空航天飞行期间经常出现的持续性高过载,对乘员的脑功能有重要影响,而脑功能受脑组织力学行为的影响,且后者与载荷特点高度相关.为预测持续性高过载下的人脑力学响应,该文采用多孔弹性本构描述了脑组织的力学行为,基于简化的头部一维多层结构模型,推导了脑组织的多孔弹性控制方程、状态量传递矩阵,利用Laplace变换及其逆变换,得到了颅内液体压力、颅内液体渗流速度、脑组织有效应力、脑组织位移的时空分布.结果表明,颅内液体渗流对脑组织在持续性高过荷下的响应有显著影响.该文强调采用多孔弹性本构描述脑组织力学行为的适切性和必要性,为极端载荷条件下人脑生物力学响应研究提供了重要的理论见解.

    (Contributed by LIU Shaobao, LU Tianjian, M. AMM Editorial Board)
    1)  (我刊编委刘少宝、卢天健来稿)
  • 图  1  头部结构及其简化模型

    Figure  1.  The head structure and its simplified model

    图  2  多孔弹性介质的微元体

    Figure  2.  The microelement of the poroelastic medium

    图  3  脑组织内代表点响应量随时间的分布

    Figure  3.  Temporal distributions of response variables for representative points in brain tissue

    图  4  达到稳定状态后,不同量值过载引起的响应量随位置的分布

    Figure  4.  Under overloads with varying magnitudes, spatial distributions of response variables in stable states

    图  5  脑组织取不同弹性模量时各响应量随时间、空间的分布

    Figure  5.  Temporal and spatial distributions of response variables for brain tissue with varying elastic moduli

    图  6  过载和弹性模量对脑组织变形和液体分布的影响

    Figure  6.  Effects of the overload magnitude and the elastic modulus on the brain tissue deformation and the liquid distribution

    图  7  脑组织取不同渗透系数时各响应量随时间、空间的分布曲线

    Figure  7.  Temporal and spatial distributions of response variables for the brain tissue with varying permeability coefficients

    表  1  头部各层结构的材料参数[13-15]

    Table  1.   Material parameters of the layers of the head structure[13-15]

    part density ρ/(kg·m-3) elastic modulus E/MPa Poisson’s ratio υ
    skin 1 200 16.7 0.42
    trabecular bone 2 000 15 000 0.22
    cancellous bone 1 300 1 000 0.24
    dura mater 1 130 31.5 0.45
    arachnoid 1 130 22.0 0.45
    pia mater 1 130 11.5 0.45
    brain tissue 1 060 3.5×10-4 0.35
    下载: 导出CSV

    表  2  一维头部模型中的参数

    Table  2.   Parameters in one-dimensional head model

    model parameter symbol value reference
    cerebrospinal fluid density ρf/(kg·m-3) 1 000 estimate
    brain tissue solid skeleton density ρsb/(kg·m-3) 1 060 [14]
    brain tissue elastic modulus Eb/Pa 350 [15]
    brain tissue porosity nb 0.2 [18]
    brain tissue permeability coefficient κb/(m·s-1) 1.59×10-7 [19]
    meningeal density ρsm/(kg·m-3) 1 130 [13]
    meningeal elastic modulus Em/MPa 31.5 [13]
    meningeal porosity nm 0.2 estimate according to [18]
    meningeal permeability coefficient κm/(m·s-1) 1×10-7 estimate according to [19]
    gravitational acceleration g/(m·s-2) 9.8 common knowledge
    upper meningeal layer thickness ΔH1/mm 0.5 [15]
    brain tissue layer thickness ΔH2/cm 10 estimate
    lower meningeal thickness ΔH3/mm 0.5 [15]
    initial intracranial pressure p0/kPa 0.55 [20]
    下载: 导出CSV
  • [1] ERCAN E, GUNDUZ S H. The effects of acceleration forces on cognitive functions[J]. Microgravity Science and Technology, 2020, 32(4): 681-686. doi: 10.1007/s12217-020-09793-0
    [2] 孙喜庆, 姜世忠. 航空航天生物动力学[M]. 西安: 第四军医大学出版社, 2013.

    SUN Xiqing, JIANG Shizhong. Aerospace Biodynamics[M]. Xi'an: Forth Military Medical University Press, 2013. (in Chinese)
    [3] BUDDAY S, OVAERT T C, HOLZAPFEL G A, et al. Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue[J]. Archives of Computational Methods in Engineering, 2020, 27: 1187-1230. doi: 10.1007/s11831-019-09352-w
    [4] SU L, WANG M, YIN J, et al. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale[J]. Acta Biomaterialia, 2023, 155: 423-435. doi: 10.1016/j.actbio.2022.11.009
    [5] BUDDAY S, STEINMANN P, KUHL E, et al. Secondary instabilities modulate cortical complexity in the mammalian brain[J]. Philosophical Magazine, 2015, 95(28/30): 3244-3256.
    [6] WEICKENMEIER J, KUHL E, GORIELY A, et al. Multiphysics of prionlike diseases: progression and atrophy[J]. Physical Review Letters, 2018, 121(15): 158101. doi: 10.1103/PhysRevLett.121.158101
    [7] CHENG S, BILSTON L E. Computational model of the cerebral ventricles in hydrocephalus[J]. Journal of Biomechanical Engineering, 2010, 132(5): 054501. doi: 10.1115/1.4001025
    [8] EHLERS W, WAGNER A. Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18(8): 861-879. doi: 10.1080/10255842.2013.853754
    [9] WEICKENMEIER J, SAEZ P, BUTLER C, et al. Bulging brains[J]. Journal of Elasticity, 2017, 129(1): 197-212.
    [10] WANG F, HAN Y, WANG B, et al. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model[J]. Biomechanics and Modeling in Mechanobiology, 2018, 17(4): 1165-1185. doi: 10.1007/s10237-018-1021-z
    [11] COMELLAS E, BUDDAY S, PELTERET J P, et al. Modeling the porous and viscous responses of human brain tissue behavior[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113128. doi: 10.1016/j.cma.2020.113128
    [12] 任立海. 弥散性脑损伤生物力学特性的数值分析研究[D]. 长沙: 湖南大学, 2015.

    REN Lihai. Numerical analysis of biomechanical characteristics of diffuse brain injury[D]. Changsha: Hunan University, 2015. (in Chinese)
    [13] 栗志杰, 由小川, 柳占立, 等. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究[J]. 爆炸与冲击, 2020, 40(1): 015901. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202001013.htm

    LI Zhijie, YOU Xiaochuan, LIU Zhanli, et al. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves[J]. Explosion and Shock Waves, 2020, 40(1): 015901. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202001013.htm
    [14] CHAFI M, KARAMI G, ZIEJEWSKI M, et al. Biomechanical assessment of brain dynamic responses due to blast pressure waves[J]. Annals of Biomedical Engineering, 2010, 38(2): 490-504. doi: 10.1007/s10439-009-9813-z
    [15] CHENG S, BILSTON L E. Unconfined compression of white matter[J]. Journal of Biomechanics, 2007, 40(1): 117-124. doi: 10.1016/j.jbiomech.2005.11.004
    [16] BOOKER J, SMALL J. A method of computing the consolidation behaviour of layered soils using direct numerical inversion of Laplace transforms[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(4): 363-380. doi: 10.1002/nag.1610110405
    [17] TALBOT A. The accurate numerical inversion of Laplace transforms[J]. IMA Journal of Applied Mathematics, 1979, 23(1): 97-120. doi: 10.1093/imamat/23.1.97
    [18] TAYLOR Z, MILLER K. Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus[J]. Journal of Biomechanics, 2004, 37(8): 1263-1269. doi: 10.1016/j.jbiomech.2003.11.027
    [19] KACZMAREK M, SUBRAMANIAM R P, NEFF S R. The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry[J]. Bulletin of Mathematical Biology, 1997, 59: 295-323. doi: 10.1007/BF02462005
    [20] WIIG H, REED R. Rat brain interstitial fluid pressure measured with micropipettes[J]. American Journal of Physiology-Heart and Circulatory Physiology, 1983, 244(2): H239-H246. doi: 10.1152/ajpheart.1983.244.2.H239
    [21] FORTE A E, GENTLEMAN S M, DINI D, et al. On the characterization of the heterogeneous mechanical response of human brain tissue[J]. Biomechanics and Modeling in Mechanobiology, 2017, 16(3): 907-920. doi: 10.1007/s10237-016-0860-8
    [22] THAPA K, KHAN H, SINGH T G, et al. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets[J]. Journal of Molecular Neuroscience, 2021, 71(9): 1725-1742. doi: 10.1007/s12031-021-01841-7
    [23] CHEN H, GARCIA-GONZALEZ D, JÉRUSALEM A. Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation[J]. Physical Review E, 2019, 99(3): 032406. doi: 10.1103/PhysRevE.99.032406
    [24] ZHAO W, CHOATE B, JI S. Material properties of the brain in injury-relevant conditions-experiments and computational modeling[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80: 222-234. doi: 10.1016/j.jmbbm.2018.02.005
    [25] JI S, GHADYANI H, BOLANDER R P, et al. Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head[J]. Annals of Biomedical Engineering, 2014, 42: 11-24. doi: 10.1007/s10439-013-0907-2
    [26] BUDDAY S, NAY R, DE ROOIJ R, et al. Mechanical properties of gray and white matter brain tissue by indentation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46: 318-330. doi: 10.1016/j.jmbbm.2015.02.024
    [27] MA H, LI F, LIU B, et al. Study on responses of HUMOS dummy in typical body posture under spacecraft re-entry overload[J]. International Journal of Crashworthiness, 2022, 27(4): 979-984. doi: 10.1080/13588265.2021.1889234
    [28] MACMANUS D B, MURPHY J G, GILCHRIST M D, et al. Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87(1): 256-266.
    [29] ERNESTON C G. Costs and benefits of physical therapy program implementation for air force fighter pilots[R]. Ohio: Department of the Air Force, 2021.
    [30] BRON D, HEGGLI U. Flying sports[M]//KRUTSCH W, MAYR H O, MUSAHL V, et al. Injury and Health Risk Management in Sports: a Guide to Decision Making. Springer, 2020: 621-626.
    [31] BUDDAY S, SOMMER G, BIRKL C, et al. Mechanical characterization of human brain tissue[J]. Acta Biomaterialia, 2017, 48(1): 319-340.
    [32] HARA M, KOBAYAKAWA K, OHKAWA Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury[J]. Nature Medicine, 2017, 23(7): 818-828. doi: 10.1038/nm.4354
    [33] ADAMS K L, GALLO V. The diversity and disparity of the glial scar[J]. Nature Neuroscience, 2018, 21(1): 9-15. doi: 10.1038/s41593-017-0033-9
    [34] 刘妍, 徐钊, 程波, 等. 考虑细胞外基质刚度的神经轴突力学模型[J]. 科学通报, 2023, 68(21): 2748-2755. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202321008.htm

    LIU Yan, XU Zhao, CHENG Bo, et al. Mechanical model of nerve axon considering the stiffness of extracellular matrix[J]. Chinese Science Bulletin, 2023, 68(21): 2748-2755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202321008.htm
    [35] 郭卉, 贺昱昇, 刘梦洁, 等. 肿瘤力医学[J]. 中华肿瘤杂志, 2024, 46(6): 536-548.

    GUO Hui, HE Yusheng, LIU Mengjie, et al. Tumor mechanomedicine[J]. Chinese Journal of Oncology, 2024, 46(6): 536-548. (in Chinese)
    [36] HE Z, ZHU Y N, CHEN Y, et al. A deep unrolled neural network for real-time MRI-guided brain intervention[J]. Nature Communications, 2023, 14(1): 8257. doi: 10.1038/s41467-023-43966-w
    [37] PILLAI E K, FRANZE K. Mechanics in the nervous system: from development to disease[J]. Neuron, 2023, 112(3): 342-361.
    [38] LIU Y, LU Y, SHAO Y, et al. Mechanism of the traumatic brain injury induced by blast wave using the energy assessment method[J]. Medical Engineering & Physics, 2022, 101: 103767.
    [39] MAO H, ZHANG L, JIANG B, et al. Development of a finite element human head model partially validated with thirty five experimental cases[J]. Journal of Biomechanical Engineering, 2013, 135(11): 111002. doi: 10.1115/1.4025101
    [40] KANG H S, WILLINGER R E M, DIAW B M, et al. Validation of a 3D anatomic human head model and replication of head impact in motorcycle accident by finite element modeling[J]. SAE Transactions, 1997, 106(6): 3849-3858.
    [41] GHBMC. Finite element human body models[EB/OL]. 2023[2024-05-20]. http://www.ghbmc.com.
    [42] TOYOTA. What is THUMS?[EB/OL]. 2023[2024-05-20]. https://www.toyota.co.jp/thums/about.
    [43] 阮世捷, 李超, 崔世海, 等. 颅骨厚度对颅内生物力学响应的影响[J]. 医用生物力学, 2021, 36(4): 560-567. https://www.cnki.com.cn/Article/CJFDTOTAL-YISX202104011.htm

    RUAN Shijie, LI Chao, CUI Shihai, et al. The influence of skull thickness on intracranial biomechanical response[J]. Journal of Medical Biomechanics, 2021, 36(4): 560-567. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YISX202104011.htm
    [44] 李凡, 叶铭杰, 黄巍, 等. 行人碰撞事故中颈部肌肉主动力对头部损伤的影响[J]. 汽车工程, 2022, 44(3): 385-391. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202203010.htm

    LI Fan, YE Mingjie, HUANG Wei, et al. Effects of neck muscle's active force on head injury in pedestrian collision accidents[J]. Automotive Engineering, 2022, 44(3): 385-391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202203010.htm
    [45] HUANG X Y, CHANG L J, ZHAO H, et al. Study on craniocerebral dynamics response and helmet protective performance under the blast waves[J]. Materials & Design, 2022, 224: 111408.
    [46] CLOOTS R J, VAN DOMMELEN J, KLEIVEN S, et al. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads[J]. Biomechanics and Modeling in Mechanobiology, 2013, 12: 137-150. doi: 10.1007/s10237-012-0387-6
    [47] CEN H, GONG H, LIU H, et al. A comparative study on the multiscale mechanical responses of human femoral neck between the young and the elderly using finite element method[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 893337. doi: 10.3389/fbioe.2022.893337
    [48] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4): 500-544. doi: 10.1113/jphysiol.1952.sp004764
    [49] KOCH C. Biophysics of Computation: Information Processing in Single Neurons[M]. Oxford: Oxford University Press, 2004.
    [50] TEKIEH T, SHAHZADI S, RAFII-TABAR H, et al. Are deformed neurons electrophysiologically altered? A simulation study[J]. Current Applied Physics, 2016, 16(10): 1413-1417. doi: 10.1016/j.cap.2016.07.012
    [51] CHEMIN J Y, DESJARDINS B, GALLAGHER I, et al. Mathematical Geophysics: an Introduction to Rotating Fluids and the Navier-Stokes Equations[M]. New York: Clarendon Press, 2006.
    [52] HOSSEINI-FARID M, RAMZANPOUR M, MCLEAN J, et al. A poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain tissues[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102: 103475. doi: 10.1016/j.jmbbm.2019.103475
    [53] BUDDAY S, SOMMER G, PAULSEN F, et al. Region- and loading-specific finite viscoelasticity of human brain tissue[J]. PAMM, 2018, 18(1): e201800169. doi: 10.1002/pamm.201800169
    [54] BUDDAY S, SAREM M, STARCK L, et al. Towards microstructure-informed material models for human brain tissue[J]. Acta Biomaterialia, 2020, 104: 53-65. doi: 10.1016/j.actbio.2019.12.030
    [55] REITER N, ROY B, PAULSEN F, et al. Insights into the microstructural origin of brain viscoelasticity: prospects for microstructure-informed constitutive modeling[J]. Journal of Elasticity, 2021, 145(8): 99-116.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  18
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-05-20
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回