A Fracture Toughness Prediction Method for Structural Components Based on Crack Tip Plastic Zone Radius Vectors
-
摘要: 由于约束效应,平面应变断裂韧性无法准确地表征工程结构的断裂韧度,二者之间的转换方法值得深入研究. 基于裂尖塑性区矢径,建立了材料断裂韧性的修正模型,从理论上将面内约束和面外约束的影响纳入到修正模型中,并提出了结构断裂韧度的预测方法. 利用该修正模型,对单边裂纹加筋板的断裂韧度和许用载荷进行了分析. 结果表明,面内约束和面外约束都对加筋板的断裂韧度、许用载荷有着重要影响;与平面应变断裂韧性和基于面内T应力的修正模型相比,基于塑性区矢径的修正模型更准确、更合理,并能综合地反映面内和面外的约束效应.Abstract: It is significant to study the transformation of fracture toughness data from plane strain conditions to engineering structures, since the plane strain fracture toughness cannot accurately characterize the fracture toughness of structural components due to constraint effects. Based on the plastic zone radius vectors of crack tips, a correction model for fracture toughness was proposed with the combined effects of in-plane and out-of-plane constraints incorporated theoretically, and a fracture toughness prediction method was developed for engineering structures. With the correction model, the fracture toughness and allowable loads were analyzed for the single edge-cracked stiffened plate. The results show that, both in-plane and out-of-plane constraints have important influences on fracture toughnesses and allowable loads of stiffened plates. Compared with the plane strain fracture toughness and the correction method based on the in-plane T-stress, the correction model based on plastic zone radius vectors is more accurate and reasonable, and can reflect the effects of in-plane and out-of-plane constraints comprehensively.
-
Key words:
- fracture toughness /
- crack tip plastic zone /
- constraint effect /
- stiffened plate /
- T-stress
-
表 1 碳钢34XH3MA断裂韧性的试验数据及相应的断裂参数[6-7]
Table 1. Measured fracture toughnesses and corresponding fracture parameters of carbon steel 34XH3MA[6-7]
specimen W/mm B/W a/W Kmax/(MPa·m1/2) T11/MPa T33/MPa rp01/2/mm1/2 rp0/a SEN(B)-S-01 20 1.000 0.300 55.72 -31.70 -90.38 0.440 05 0.032 SEN(B)-S-02 20 1.000 0.605 55.28 94.05 -21.21 0.417 42 0.014 SEN(B)-S-03 20 1.000 0.620 59.42 105.90 -18.68 0.446 74 0.016 SEN(B)-S-04 20 0.500 0.245 72.35 -73.61 -221.50 0.723 29 0.107 SEN(B)-S-05 20 0.500 0.250 60.84 -58.97 -185.44 0.560 03 0.063 SEN(B)-S-06 20 0.500 0.445 61.44 45.28 -155.45 0.559 19 0.035 SEN(B)-S-07 20 0.500 0.445 69.70 51.40 -176.38 0.662 87 0.049 SEN(B)-S-08 20 0.500 0.610 58.91 108.88 -116.87 0.517 36 0.022 SEN(B)-S-09 20 0.500 0.615 61.25 115.75 -120.05 0.542 05 0.024 C(T)-S-01 40 0.500 0.350 67.36 125.35 -123.23 0.612 02 0.027 C(T)-S-02 40 0.500 0.350 70.17 130.67 -128.41 0.641 17 0.029 C(T)-S-03 40 0.500 0.625 66.28 151.25 -93.81 0.591 30 0.014 C(T)-S-04 40 0.500 0.645 72.13 163.25 -98.13 0.639 30 0.016 C(T)-S-05 40 0.250 0.380 82.12 169.98 -248.60 0.977 62 0.063 C(T)-S-06 40 0.250 0.425 83.55 187.50 -249.03 1.006 96 0.060 C(T)-S-07 40 0.250 0.490 80.67 192.03 -236.13 0.941 30 0.045 C(T)-S-08 40 0.250 0.475 82.00 194.25 -240.77 0.975 05 0.050 -
[1] 刘葳, 蔡庆港, 金腾龙, 等. 极端循环载荷下加筋板失效机理与极限强度[J]. 哈尔滨工程大学学报, 2023, 44(8): 1275-1282.LIU Wei, CAI Qinggang, JIN Tenglong, et al. Failure mechanism and ultimate strength of stiffened plates under extreme cyclic load[J]. Journal of Harbin Engineering University, 2023, 44(8): 1275-1282. (in Chinese) [2] 刘宸宇, 骆烜赫, 刘康翔, 等. 基于平铺刚度法的弧形加筋板的轻量化设计[J]. 应用数学和力学, 2023, 44(8): 953-964. doi: 10.21656/1000-0887.430342LIU Chenyu, LUO Xuanhe, LIU Kangxiang, et al. Lightweight design of arc rib stiffened plates based on the smeared stiffener method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 953-964. (in Chinese) doi: 10.21656/1000-0887.430342 [3] HUANG X L, LIU Y H, HUANG X B, et al. Crack arrest behavior of central-cracked stiffened plates under uniform tensions[J]. International Journal of Mechanical Sciences, 2017, 133: 704-719. doi: 10.1016/j.ijmecsci.2017.09.040 [4] 黄兴玲. 考虑约束效应的加筋板断裂行为研究[D]. 北京: 清华大学, 2019.HUANG Xingling. Research on fracture behavior of stiffened plates in consideration of constraint effects[D]. Beijing: Tsinghua University, 2019. (in Chinese) [5] HUANG Xingling. Combined effects of in-plane and out-of-plane constraints on fracture behaviors in central-cracked stiffened plates: a model based on plastic zone size[J]. Engineering Fracture Mechanics, 2021, 255: 107958. doi: 10.1016/j.engfracmech.2021.107958 [6] HUANG Xingling, LIU Yinghua, HUANG Xiangbing. New constraint parameters based on crack tip plastic zone: theoretical derivations and effectiveness verification[J]. International Journal of Solids and Structures, 2020, 190: 129-147. doi: 10.1016/j.ijsolstr.2019.11.009 [7] SHLYANNIKOV V N, BOYCHENKO N V, TUMANOV A V, et al. The elastic and plastic constraint parameters for three-dimensional problems[J]. Engineering Fracture Mechanics, 2014, 127: 83-96. doi: 10.1016/j.engfracmech.2014.05.015 [8] MU M Y, WANG G Z, XUAN F Z, et al. Unified correlation of in-plane and out-of-plane constraints with cleavage fracture toughness[J]. Theoretical and Applied Fracture Mechanics, 2015, 80: 121-132. doi: 10.1016/j.tafmec.2015.10.005 [9] LV J, YU L, DU W, et al. Theoretical approach of characterizing the crack-tip constraint effects associated with material's fracture toughness[J]. Archive of Applied Mechanics, 2018, 88(9): 1637-1656. doi: 10.1007/s00419-018-1392-8 [10] 彭凡, 董世明. 一类非均布载荷下中心裂纹圆盘T应力分析[J]. 应用数学和力学, 2018, 39(7): 766-775. doi: 10.21656/1000-0887.380136PENG Fan, DONG Shiming. T-stress in a centrally cracked Brazilian disk under nonuniform pressure load[J]. Applied Mathematics and Mechanics, 2018, 39(7): 766-775. (in Chinese) doi: 10.21656/1000-0887.380136 [11] SEAL C K, SHERRY A H. Predicting the effect of constraint on cleavage and ductile fracture toughness using area contour toughness scaling[J]. Engineering Fracture Mechanics, 2017, 186: 347-367. doi: 10.1016/j.engfracmech.2017.09.029 [12] TONGE S M, SIMPSON C A, REINHARD C, et al. Unifying the effects of in and out-of-plane constraint on the fracture of ductile materials[J]. Journal of the Mechanics and Physics of Solids, 2020, 141: 103956. doi: 10.1016/j.jmps.2020.103956 [13] ANDERSON T L. Fracture Mechanics: Fundamentals and Applications[M]. 3rd ed. New York: CRC Press, 2005: 25-101. [14] HUANG Xingling, LIU Yinghua, HUANG Xiangbing. Analytical characterizations of crack tip plastic zone size for central-cracked unstiffened and stiffened plates under biaxial loading[J]. Engineering Fracture Mechanics, 2019, 206: 1-20. doi: 10.1016/j.engfracmech.2018.11.047 [15] HUANG Xingling, LIU Yinghua. Effects of T-stress on fracture behavior of central-cracked stiffened plate[J]. Key Engineering Materials, 2019, 795: 389-394. doi: 10.4028/www.scientific.net/KEM.795.389 [16] 徐华, 曹政, 邹云鹏, 等. 裂纹面分布加载裂尖SIFs分析的广义参数Williams单元[J]. 应用数学和力学, 2022, 43(7): 752-760. doi: 10.21656/1000-0887.420317XU Hua, CAO Zheng, ZOU Yunpeng, et al. Williams elements with generalized degrees of freedom for crack tip SIFs analysis under crack surface distributed loading[J]. Applied Mathematics and Mechanics, 2022, 43(7): 752-760. (in Chinese) doi: 10.21656/1000-0887.420317 -