[2]HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J].Journal of Computational Physics,1987,71(2): 231-303.〖JP〗
|
LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics,1994,115(1): 200-212.
|
[3]JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1): 202-228.
|
[4]SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ[J].Journal of Computational Physics,1989,83(1): 32-78.
|
[5]HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points[J].Journal of Computational Physics,2005,207(2): 542-567.
|
[6]BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics,2008,227(6): 3191-3211.
|
[7]HA Y, KIM C H, LEE Y J, et al. An improved weighted essentially non-oscillatory scheme with a new smoothness indicator[J].Journal of Computational Physics,2013,232(1): 68-86.
|
[8]FAN P, SHEN Y Q, TIAN B L, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme[J].Journal of Computational Physics,2014,269: 329-354.
|
[9]YAN Z G, LIU H Y, MAO M L, et al. New nonlinear weights for improving accuracy and resolution of weighted compact nonlinear scheme[J].Computers & Fluids,2016,127: 226-240.
|
[10]KIM C H, HA Y S, YOON J H. Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J].Journal of Scientific Computing,2016,67(1): 299-323.
|
[11]CASTRO M, COSTA B, DON W S. High order weighted essentiallynon-oscillatory WENO-Z schemes for hyperbolic conservation laws[J].Journal of Computational Physics,2011,230(5): 1766-1792.
|
[12]ARNDIGA F, BAEZA A, BELDA A M, et al. Analysis of WENO schemes for full and global accuracy[J].SIAM Journal on Numerical Analysis,2011,49(2): 893-915.
|
[13]王亚辉. 求解双曲守恒律方程的三阶修正模板WENO格式[J]. 应用数学和力学, 2022,43(2): 224-236. (WANG Yahui. A 3rd-order modified stencil WENO scheme for solution of hyperbolic conservation law equations[J].Applied Mathematics and Mechanics,2022,43(2): 224-236. (in Chinese))
|
[14]WANG Y H, DU Y L, ZHAO K L, et al. Modified stencil approximations for fifth-order weighted essentially non-oscillatory schemes[J].Journal of Scientific Computing,2019,81(2): 898-922.
|
[15]WANG Y H, DU Y L, ZHAO K L, et al. A new 6th-order WENO scheme with modified stencils[J].Computers & Fluids,2020,208: 104625.
|
[16]WANG Y H. Improved weighted essentially non-oscillatory schemes with modified stencil approximation[J].Computational and Applied Mathematics,2023,42(2): 82.
|
[17]ZENG F J, SHEN Y Q, LIU S P. A perturbational weighted essentially non-oscillatory scheme[J].Computers & Fluids,2018,172: 196-208.
|
[18]WU X, ZHAO Y. A high-resolution hybrid scheme for hyperbolic conservation laws[J].International Journal for Numerical Methods in Fluids,2015,78(3): 162-187.
|
[19]WU X, LIANG J, ZHAO Y. A new smoothness indicator for third-order WENO scheme[J].International Journal for Numerical Methods in Fluids,2016,81(7): 451-459.
|
[20]XU W, WU W. An improved third-order WENO-Z scheme[J].Journal of Scientific Computing,2018,75(3): 1808-1841.
|
[21]WANG Y H, DU Y L, ZHAO K L, et al. A low-dissipation third-order weighted essentially nonoscillatory scheme with a new reference smoothness indicator[J].International Journal for Numerical Methods in Fluids,2020,92(9): 1212-1234.
|
[22]王亚辉. 基于新的参考光滑性指示子的改进的三阶WENO格式[J]. 应用数学和力学, 2022,43(7): 802-815. (WANG Yahui. An improved 3rd-order WENO scheme based on a new reference smoothness indicator[J].Applied Mathematics and Mechanics,2022,43(7): 802-815. (in Chinese))
|
[23]徐维铮, 吴卫国. 三阶WENO-Z格式精度分析及其改进格式[J]. 应用数学和力学, 2018,39(8): 946-960. (XU Weizheng, WU Weiguo. Precision analysis of the 3rd-order WENO-Z scheme and its improved scheme[J].Applied Mathematics and Mechanics,2018,39(8): 946-960. (in Chinese))
|
[24]LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J].Communications on Pure and Applied Mathematics,1954,7(1): 159-193.
|
[25]SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics,1978,27(1): 1-31.
|
[26]WANG Y H, GUO C. Improved third-order WENO scheme with a new reference smoothness indicator[J].Applied Numerical Mathematics,2023,192: 454-472.
|
[27]WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1): 115-173.
|