留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于导波和轻量化卷积神经网络的复合材料结构损伤识别方法

包文强 马济通 赵森 杨正岩

包文强, 马济通, 赵森, 杨正岩. 基于导波和轻量化卷积神经网络的复合材料结构损伤识别方法[J]. 应用数学和力学, 2025, 46(8): 1027-1036. doi: 10.21656/1000-0887.450162
引用本文: 包文强, 马济通, 赵森, 杨正岩. 基于导波和轻量化卷积神经网络的复合材料结构损伤识别方法[J]. 应用数学和力学, 2025, 46(8): 1027-1036. doi: 10.21656/1000-0887.450162
BAO Wenqiang, MA Jitong, ZHAO Sen, YANG Zhengyan. A Lightweight Convolutional Neural Network for Guided Wave Based Damage Detection in Composite Structures[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1027-1036. doi: 10.21656/1000-0887.450162
Citation: BAO Wenqiang, MA Jitong, ZHAO Sen, YANG Zhengyan. A Lightweight Convolutional Neural Network for Guided Wave Based Damage Detection in Composite Structures[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1027-1036. doi: 10.21656/1000-0887.450162

基于导波和轻量化卷积神经网络的复合材料结构损伤识别方法

doi: 10.21656/1000-0887.450162
基金项目: 

国家自然科学基金 12102075

国家自然科学基金 62101090

中国科协青年人才托举工程 2022QNRC001

中央高校基本科研业务费 3132024236

详细信息
    作者简介:

    包文强(1999—),男,硕士(E-mail: baowenqiang2022@163.com)

    通讯作者:

    杨正岩(1993—),女,教授,博士(通讯作者. E-mail: zyyang1993@jiangnan.edu.cn)

  • 中图分类号: V11

A Lightweight Convolutional Neural Network for Guided Wave Based Damage Detection in Composite Structures

  • 摘要: 针对有限计算资源下复合材料的实时监测问题,该文提出了基于超声导波和轻量化卷积神经网络(one-dimension convolutional neural network-deformable convolution attention,CDCA)的损伤实时识别方法. 在该方法中,为了压缩多个路径的导波信号,首先提出了改进差分驱动的平均聚合(improved differential-driven piecewise aggregate approximation,IDPAA)算法,利用该方法可以显著减少计算量;其次,提出了轻量化可变形卷积注意力(deformable convolution attention,DCA)机制,让模型聚焦在与损伤相关的像素级特征,从而实现更高效、准确的结构损伤识别;最后,通过结合一维卷积神经网络(one-dimension convolutional neural network,1D-CNN)和DCA机制,构建了CDCA模型. 该模型不仅可以在有限资源环境下运行,还能实现含噪声工况下的损伤实时识别. 在真实数据集上验证了所提出方法的有效性. 试验结果表明,所提出的损伤识别方法有较高的损伤识别准确性,准确率可达98%,并且大幅提高了模型计算效率,相较于其他先进深度学习模型具有显著的优势.
  • 图  1  IDPAA算法示意图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The schematic representation of the IDPAA algorithm

    图  2  CDCA模型结构

    Figure  2.  The architecture of the CDCA model

    图  3  实验设置

    Figure  3.  The experimental setup

    图  4  不同路径的完整信号、损伤信号对比图

    Figure  4.  Comparison of intact signals and damage signals for different paths

    图  5  压缩前后的导波信号

    Figure  5.  Guided wave signals before and after compression

    图  6  不同信噪比噪声条件下的混淆矩阵

    Figure  6.  Confusion matrixes under different SNR noise conditions

    图  7  模型性能对比

    Figure  7.  The model performance comparison diagram

    表  1  模型参数量,计算复杂度对比表

    Table  1.   Comparison of the model parameters and the computational complexities

    model number of parameters FLOPs
    CDCA 0.17M 7.2M
    ResNet 18(1D-CNN) 3.9M 175M
    CNN-LSTM 0.43M 139M
    multi-scale 1D-CNN 8.6M 51M
    下载: 导出CSV
  • [1] ZHANG Z, LIU M, LI Q, et al. Visualized characterization of diversified defects in thick aerospace composites using ultrasonic B-scan[J]. Composites Communications, 2020, 22: 100435. doi: 10.1016/j.coco.2020.100435
    [2] YUN H, WANG R, RAYHANA R, et al. WaveCLR: contrastive learning of guided wave representations for composite damage identification[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2515914.
    [3] BABU J, SUNNY T, PAUL N A, et al. Assessment of delamination in composite materials: a review[J]. Proceedings of the Institution of Mechanical Engineers (Part B): Journal of Engineering Manufacture, 2016, 230(11): 1990-2003. doi: 10.1177/0954405415619343
    [4] LI B, ZHANG L, YANG B. Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting[J]. Composites Communications, 2020, 19: 56-60. doi: 10.1016/j.coco.2020.03.001
    [5] YUN H, FENG K, RAYHANA R, et al. A multidimensional data fusion neural network for damage localization using ultrasonic guided wave[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2522912.
    [6] 姚浩, 夏桂然, 刘泽佳, 等. 基于机器学习的黏钢构件黏接层缺陷识别方法研究[J]. 应用数学和力学, 2024, 45(4): 429-442. doi: 10.21656/1000-0887.440365

    YAO Hao, XIA Guiran, LIU Zejia, et al. A defect identification method for bonding layers of adhesive steel members based on machine learning[J]. Applied Mathematics and Mechanics, 2024, 45(4): 429-442. (in Chinese) doi: 10.21656/1000-0887.440365
    [7] LIM H J, SOHN H. Online stress monitoring technique based on lamb-wave measurements and a convolutional neural network under static and dynamic loadings[J]. Experimental Mechanics, 2020, 60(2): 171-179. doi: 10.1007/s11340-019-00546-8
    [8] LIAO Y, QING X, WANG Y, et al. Damage localization for composite structure using guided wave signals with Gramian angular field image coding and convolutional neural networks[J]. Composite Structures, 2023, 312: 116871. doi: 10.1016/j.compstruct.2023.116871
    [9] GORGIN R, LUO Y, WU Z. Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: a review[J]. Ultrasonics, 2020, 105: 106114. doi: 10.1016/j.ultras.2020.106114
    [10] LIU K, MA S, WU Z, et al. A novel probability-based diagnostic imaging with weight compensation for damage localization using guided waves[J]. Structural Health Monitoring, 2016, 15(2): 162-173. doi: 10.1177/1475921715627491
    [11] ZHAO X, GAO H, ZHANG G, et al. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network, Ⅰ: defect detection, localization and growth monitoring[J]. Smart Materials and Structures, 2007, 16(4): 1208-1217. doi: 10.1088/0964-1726/16/4/032
    [12] ANGRISANI L, BACCIGALUPI A, SCHIANO L M R. Ultrasonic time-of-flight estimation through unscented Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(4): 1077-1084. doi: 10.1109/TIM.2006.877748
    [13] SHAO W, SUN H, WANG Y, et al. A multi-level damage classification technique of aircraft plate structures using Lamb wave-based deep transfer learning network[J]. Smart Materials and Structures, 2022, 31(7): 075019. doi: 10.1088/1361-665X/ac726f
    [14] LIAO Y, WANG Y, ZENG X, et al. Multiscale 1-DCNN for damage localization and quantification using guided waves with novel data fusion technique and new self-attention module[J]. IEEE Transactions on Industrial Informatics, 2024, 20(1): 492-502. doi: 10.1109/TII.2023.3268442
    [15] SIKDAR S, LIU D, KUNDU A. Acoustic emission data based deep learning approach for classification and detection of damage-sources in a composite panel[J]. Composites (Part B): Engineering, 2022, 228: 109450. doi: 10.1016/j.compositesb.2021.109450
    [16] RAUTELA M, GOPALAKRISHNAN S. Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks[J]. Expert Systems With Applications, 2021, 167: 114189. doi: 10.1016/j.eswa.2020.114189
    [17] ZHANG H, HUA J, LIN J, et al. Damage localization with Lamb waves using dense convolutional sparse coding network[J]. Structural Health Monitoring, 2015, 22: 1180-1192.
    [18] 张巧灵, 高淑萍, 何迪, 等. 基于时间序列的混合神经网络数据融合算法[J]. 应用数学和力学, 2021, 42(1): 82-91. doi: 10.21656/1000-0887.410056

    ZHANG Qiaoling, GAO Shuping, HE Di, et al. A hybrid neural network data fusion algorithm based on time series[J]. Applied Mathematics and Mechanics, 2021, 42(1): 82-91. (in Chinese) doi: 10.21656/1000-0887.410056
    [19] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 764-773.
    [20] RAVENSCROFT W, GOETZE S, HAIN T. Deformable temporal convolutional networks for monaural noisy reverberant speech separation[C]// 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Rhodes Island: IEEE, 2023: 1-5.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  9
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-31
  • 修回日期:  2024-09-18
  • 刊出日期:  2025-08-01

目录

    /

    返回文章
    返回