留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维点阵结构拓扑开发研究进展及其对流传热性能对比

丁一 吴威涛 封锋 李书磊 闫宏斌

丁一, 吴威涛, 封锋, 李书磊, 闫宏斌. 三维点阵结构拓扑开发研究进展及其对流传热性能对比[J]. 应用数学和力学, 2024, 45(8): 1001-1023. doi: 10.21656/1000-0887.450184
引用本文: 丁一, 吴威涛, 封锋, 李书磊, 闫宏斌. 三维点阵结构拓扑开发研究进展及其对流传热性能对比[J]. 应用数学和力学, 2024, 45(8): 1001-1023. doi: 10.21656/1000-0887.450184
DING Yi, WU Weitao, FENG Feng, LI Shulei, YAN Hongbin. Topology Review and Convective Heat Transfer Comparison of 3D Lattice Structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1001-1023. doi: 10.21656/1000-0887.450184
Citation: DING Yi, WU Weitao, FENG Feng, LI Shulei, YAN Hongbin. Topology Review and Convective Heat Transfer Comparison of 3D Lattice Structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1001-1023. doi: 10.21656/1000-0887.450184

三维点阵结构拓扑开发研究进展及其对流传热性能对比

doi: 10.21656/1000-0887.450184
基金项目: 

中央高校基本科研业务费 309231B8801

详细信息
    作者简介:

    丁一(2000—),男,硕士生(E-mail: dingyivip@njust.edu.cn)

    通讯作者:

    闫宏斌(1988—),男,副教授,硕士生导师(通讯作者. E-mail: hbyan@njust.edu.cn)

  • 中图分类号: O35;V19

Topology Review and Convective Heat Transfer Comparison of 3D Lattice Structures

  • 摘要: 系统综述了国内外三维点阵结构拓扑开发的研究现状,分别在等流量、等压降和等泵功条件下对比了其总体传热与散热性能. 在模型验证的基础上,针对12种具有相同特征尺寸和孔隙率的点阵结构,分别在6种不同点阵材质、两种不同取向下开展了数值模拟与性能对比. 结果表明:点阵拓扑、点阵材质及运行工况对其传热和散热性能优劣具有显著影响;不同条件下,性能最优的点阵不尽相同. 在等流量下,A向节点偏移X点阵和A向八叉树点阵的传热性能最优,A向节点偏移X点阵的散热性能最优. 在等压降下,A向节点偏移X点阵和B向节点偏移X点阵的传热性能最优,B向立方点阵和B向节点偏移X点阵的散热性能最优. 在等泵功下,A向节点偏移X点阵和B向矩形杆金字塔点阵的传热性能最优,B向节点偏移X点阵和B向矩形杆金字塔点阵的散热性能最优. 在固定孔隙率和特征尺寸下构建了现有点阵结构的传热与散热性能数据库,可作为新型点阵拓扑开发的比较基准,同时,可为不同工程设计中点阵结构的选型提供指导.
  • 图  1  点阵结构在对流换热与热管理领域的潜在应用

    Figure  1.  Potential applications of lattice structures in the fields of convective heat transfer and thermal management

    图  2  文献目前报道的三维周期性点阵结构

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Schematic illustration of the 3D periodic lattice structures reported in the literatures

    图  3  具有圆截面杆件的点阵结构形貌参数示意图

    Figure  3.  Schematic illustration of morphology parameters of lattice structures with circular ligaments

    图  4  具有矩形截面杆件的点阵结构形貌参数示意图

    Figure  4.  Schematic illustration of morphology parameters of lattice structures with rectangular ligaments

    图  5  本文所对比12种点阵结构的传热面积

    Figure  5.  Heat transfer areas of 12 lattice structures compared in this paper

    图  6  点阵结构导热与对流耦合传热计算域及边界条件

    Figure  6.  Calculation domains and boundary conditions of thermal and convective conjugate heat transfer of lattice structures

    图  7  本文数值模拟所采用的代表性计算网格(以八叉树点阵为例)

    Figure  7.  A representative mesh used in numerical simulation (with the octet lattice as an example)

    图  8  本文数值模拟与文献中实验测量所得总体Nusselt数与阻力系数对比

    Figure  8.  Comparison of the overall Nusselt numbers and friction factors between numerical simulation in this paper and experimental data in the literatures

    图  9  不同材料点阵结构在等流量条件下的总体传热性能对比

    Figure  9.  Overall heat transfer performance comparison between lattice structures with different materials under fixed flow rate conditions

    图  10  固体材料导热系数对点阵结构总体传热性能的影响

    Figure  10.  Effects of thermal conductivities of lattice structure materials on the overall heat transfer performances

    图  11  等流量下的总体阻力特性对比

    Figure  11.  Overall resistance characteristics comparison under fixed flow rate conditions

    图  12  等流量下点阵结构热沉的无量纲热阻对比

    Figure  12.  Dimensionless thermal resistance comparison of lattice structures in heat sink under fixed flow rate conditions

    图  13  不同材料点阵结构在等压降条件下的总体传热性能对比

    Figure  13.  Overall heat transfer performance comparison of lattice structures with different materials under fixed pressure drop conditions

    图  14  等压降下点阵结构热沉的无量纲热阻对比

    Figure  14.  Dimensionless thermal resistance comparison of lattice structures in heat sink under fixed pressure drop conditions

    图  15  不同材料点阵结构在等泵功条件下的总体传热性能对比

    Figure  15.  Overall heat transfer performance comparison of lattice structures with different materials under fixed pumping power conditions

    图  16  等泵功下点阵结构热沉的无量纲热阻对比

    Figure  16.  Dimensionless thermal resistance comparison of lattice structures in heat sink under fixed pumping power conditions

    表  1  具有圆截面杆件的点阵结构几何参数

    Table  1.   Morphological parameters of lattice structures with circular ligaments

    parameter value
    CL FCCL BCCL OL TL KL CTL CPL
    d/mm 1.872 1.271 1.032 0.788 1.124 1.927 1.927 1.746
    H/mm 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66
    l/mm 9.66 9.66 9.66 9.66 9.66 20.49 20.49 12.0
    ts/mm 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
    w/mm 9.66 9.66 9.66 9.66 9.66 11.83 11.83 12.00
    ε/% 92.18 92.18 92.18 92.18 92.18 92.18 92.18 92.18
    下载: 导出CSV

    表  2  具有矩形截面杆件的点阵结构几何参数

    Table  2.   Morphological parameters of lattice structures with rectangular ligaments

    parameter value parameter value
    RTL RPL XL SXL RTL RPL XL SXL
    b1/mm - - 2.70 2.70 tl/mm 0.91 0.91 0.91 0.91
    b2/mm - - 2.31 2.31 ts/mm 0.90 0.90 0.90 0.90
    H/mm 9.66 9.66 9.66 9.66 w/mm 11.83 12.00 12.00 12.00
    l/mm 20.49 12.00 12.00 12.00 wj/mm 2.95 4.15 4.15 4.15
    r1/mm 0.30 0.30 0.30 0.30 wl/mm 3.00 2.16 2.16 2.16
    r2/mm 2.00 4.30 4.30 4.30 α/(°) 47 50 50 50
    r3/mm 0.55 1.05 1.05 1.05 β/(°) 58.53 42 42 42
    r4/mm 0.80 1.00 1.00 1.00 ε/% 92.18 92.18 92.18 92.18
    下载: 导出CSV

    表  3  本文数值模拟所采用的工况参数与热物性参数

    Table  3.   Operating conditions and thermo-physical properties used in numerical simulation

    parameter value
    air density ρf/(kg/m3) 1.184
    air dynamic viscosity μf×105/(Pa·s) 1.849 2
    air thermal conductivity kf/(W·m-1·K-1) 0.026 1
    air specific heat capacity cpf/(J·kg-1·K-1) 1 004
    solid thermal conductivity ks/(W·m-1·K-1) 236
    heat flux q″/(W/m2) 10 000
    inlet air temperature Tf, in/℃ 25
    Reynolds number ReH 2 692~11 087
    下载: 导出CSV

    表  4  24个数值模型总网格数统计表

    Table  4.   Statistics of the meshes generated for the 24 numerical models

    PCS total number of elements PCS total number of elements
    OA OB OA OB
    CL 11 761 825 23 978 300 CTL 22 242 132 48 769 106
    FCCL 19 669 169 39 259 294 CPL 27 112 651 53 354 748
    BCCL 20 654 487 41 704 475 RTL 22 373 833 31 553 690
    OL 23 690 031 13 271 641 RPL 25 810 821 25 232 115
    TL 19 525 317 38 512 603 XL 25 165 166 50 420 874
    KL 21 348 441 47 000 798 SXL 24 923 744 53 660 065
    下载: 导出CSV
  • [1] 李勇. 超临界碳氢燃料流动传热特性及其强化机理研究[D]. 西安: 西北工业大学, 2021.

    LI Yong. Study on heat transfer characteristics and strengthening mechanism of supercritical hydrocarbon fuel[D]. Xi'an: Northwestern Polytechnical University, 2021. (in Chinese)
    [2] 张凯, 吴引江, 刘高建, 等. 高孔隙率金属多孔材料的制备技术与应用[J]. 中国材料进展, 2023, 42(10): 814-825.

    ZHANG Kai, WU Yingjiang, LIU Gaojian, et al. Preparation technology and application of metal porous materials with high porosity[J]. Materials China, 2023, 42(10): 814-825. (in Chinese)
    [3] YAN H B, WU W T, ZHAO Z Y, et al. Review and comparison of turbulent convective heat transfer in state-of-the-art 3D truss periodic cellular structures[J]. Applied Thermal Engineering, 2023, 235: 121450. doi: 10.1016/j.applthermaleng.2023.121450
    [4] 张永存. 多孔材料传热特性分析与散热结构优化设计[D]. 大连: 大连理工大学, 2008.

    ZHANG Yongcun. Heat transfer characteristic analysis and heat dissipation structure optimization design of porous materials[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
    [5] 严景好, 李杰, 李一鸣, 等. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434.

    YAN Jinghao, LI Jie, LI Yiming, et al. Numerical simulation of thermal storage performance of composite phase change cell based on gradient porosity metal foam[J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. (in Chinese)
    [6] 何树, 娄钦. 多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究[J]. 应用数学和力学, 2024, 45(3): 348-364. doi: 10.21656/1000-0887.440212

    HE Shu, LOU Qin. Simulation study of porosity effects of porous media on pool boiling heat transfer performances[J]. Applied Mathematics and Mechanics, 2024, 45(3): 348-364. (in Chinese) doi: 10.21656/1000-0887.440212
    [7] 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517-535. doi: 10.3321/j.issn:1000-0992.2006.04.004

    LU Tianjian, HE Deping, CHEN Changqing, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Adcances in Mechanics, 2006, 36(4): 517-535. (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.004
    [8] MEKKI B S, LANGER J, LYNCH S. Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121002. doi: 10.1016/j.ijheatmasstransfer.2021.121002
    [9] FENG S S, LI M Z, JOO J H, et al. Thermomechanical properties of brazed wire-woven bulk Kagome cellular metals for multifunctional applications[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(1): 66-74. doi: 10.2514/1.49434
    [10] FERRARI L, BARBATO M, ESSER B, et al. Sandwich structured ceramic matrix composites with periodic cellular ceramic cores: an active cooled thermal protection for space vehicles[J]. Composite Structures, 2016, 154: 61-68. doi: 10.1016/j.compstruct.2016.07.043
    [11] LUO S B, XU D Q, SONG J W, et al. A review of regenerative cooling technologies for scramjets[J]. Applied Thermal Engineering, 2021, 190: 116754. doi: 10.1016/j.applthermaleng.2021.116754
    [12] KAUR I, AIDER Y, NITHYANANDAM K, et al. Thermal-hydraulic performance of additively manufactured lattices for gas turbine blade trailing edge cooling[J]. Applied Thermal Engineering, 2022, 211: 118461. doi: 10.1016/j.applthermaleng.2022.118461
    [13] YAN H B, MEW T, LEE M G, et al. Thermofluidic characteristics of a porous ventilated brake disk[J]. Journal of Heat Transfer, 2015, 137(2): 022601. doi: 10.1115/1.4028864
    [14] YAN H B, ZHANG Q C, LU T J. Heat transfer enhancement by X-type lattice in ventilated brake disc[J]. International Journal of Thermal Sciences, 2016, 107: 39-55. doi: 10.1016/j.ijthermalsci.2016.03.026
    [15] 黄安坤, 温耀杰, 张百成, 等. 增材制造金属点阵结构性能研究进展[J]. 航空制造技术, 2023, 66(11): 90-101.

    HUANG Ankun, WEN Yaojie, ZHANG Baicheng, et al. Research progress on properties of metal lattice structures in additive manufacturing[J]. Aeronautical Manufacturing Technology, 2023, 66(11): 90-101. (in Chinese)
    [16] 杨伟东, 李浩南, 王媛媛, 等. 面向增材制造的非均匀点阵结构综述[J/OL]. 机械科学与技术, 2023[2024-07-12]. https://doi.org/10.13433/j.cnki.1003-8728.20230060.

    YANG Weidong, LI Haonan, WANG Yuanyuan, et al. A review of heterogeneous lattice structures for additive manufacturing[J/OL]. Mechanical Science and Technology for Aerosapce Engineering, 2023[2024-07-12]. https://doi.org/10.13433/j.cnki.1003-8728.20230060. (in Chinese)
    [17] RAZANI A, PAQUETTE J W, MONTOYA B, et al. A thermal model for calculation of heat transfer enhancement by porous metal inserts[J]. Journal of Enhanced Heat Transfer, 2001, 8: 411-420. doi: 10.1615/JEnhHeatTransf.v8.i6.50
    [18] INAYAT A, FREUND H, ZEISER T, et al. Determining the specific surface area of ceramic foams: the tetrakaidecahedra model revisited[J]. Chemical Engineering Science, 2011, 66(6): 1179-1188. doi: 10.1016/j.ces.2010.12.031
    [19] KOOISTRA G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium[J]. Acta Materialia, 2004, 52(14): 4229-4237. doi: 10.1016/j.actamat.2004.05.039
    [20] LI M, WU L, MA L, WANG B, et al. Mechanical response of all-composite pyramidal lattice truss core sandwich structures[J]. Journal of Materials Science & Technology, 2011, 27(6): 570-576.
    [21] REN X, XIAO L, HAO Z. Multi-property cellular material design approach based on the mechanical behaviour analysis of the reinforced lattice structure[J]. Materials & Design, 2019, 174: 117785.
    [22] HYUN S, TORQUATO S. Optimal and manufacturable two-dimentional, Kagome-like cellular solids[J]. Journal of Materials Research Society, 2001, 17: 137-144.
    [23] DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material[J]. Journal of the Mechanics and Physics of Solids, 2001, 49: 1747-1769. doi: 10.1016/S0022-5096(01)00010-2
    [24] YUN S, KWON J, LEE D C, et al. Heat transfer and stress characteristics of additive manufactured FCCZ lattice channel using thermal fluid-structure interaction model[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119187. doi: 10.1016/j.ijheatmasstransfer.2019.119187
    [25] ZHANG Q C, HAN Y B, CHEN C Q, et al. Ultralight X-type lattice sandwich structure (Ⅰ): concept, fabrication and experimental characterization[J]. Science in China(Series E): Technological Sciences, 2009, 52(8): 2147-2154. doi: 10.1007/s11431-009-0219-9
    [26] LV G X, JENSEN E, SHEN C T, et al. Effect of amine hardener molecular structure on the thermal conductivity of epoxy resins[J]. ACS Applied Polymer Materials, 2020, 3(1): 259-267.
    [27] TU Z C, MAO J K, HAN X S, et al. Prediction model for the anisotropic thermal conductivity of a 2.5-D braided ceramic matrix composite with thin-wall structure[J]. Applied Sciences, 2019, 9(5): 875. doi: 10.3390/app9050875
    [28] SWEET J N, ROTH E P, MOSS M. Thermal conductivity of Inconel 718 and 304 stainless steel[J]. International Journal of Thermophysics, 1987, 8(5): 593-606. doi: 10.1007/BF00503645
    [29] DIXIT T, NITHIARASU P, KUMAR S. Numerical evaluation of additively manufactured lattice architectures for heat sink applications[J]. International Journal of Thermal Sciences, 2021, 159: 106607. doi: 10.1016/j.ijthermalsci.2020.106607
    [30] WANG Y, DING G F. Numerical analysis of heat transfer in a manifold microchannel heat sink with high efficient copper heat spreader[J]. Microsystem Technologies, 2007, 14(3): 389-395.
    [31] JIN X, SHEN B B, YAN H B, et al. Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and pyramidal-lattice cores[J]. International Journal of Heat and Mass Transfer, 2018, 127: 268-282. doi: 10.1016/j.ijheatmasstransfer.2018.07.087
    [32] ZHANG X Q, JIN X, XIE G N, et al. Thermo-fluidic comparison between sandwich panels with tetrahedral lattice cores fabricated by casting and metal sheet folding[J]. Energies, 2017, 10(7): 906. doi: 10.3390/en10070906
    [33] SHEN B B, YAN H B, XUE H Q, et al. The effects of geometrical topology on fluid flow and thermal performance in Kagome cored sandwich panels[J]. Applied Thermal Engineering, 2018, 142: 79-88. doi: 10.1016/j.applthermaleng.2018.06.080
    [34] YAN H B, ZHANG Q C, CHEN W J, et al. An X-lattice cored rectangular honeycomb with enhanced convective heat transfer performance[J]. Applied Thermal Engineering, 2020, 166: 114687. doi: 10.1016/j.applthermaleng.2019.114687
    [35] JOO J H, KANG K J, KIM T, et al. Forced convective heat transfer in all metallic wire-woven bulk Kagome sandwich panels[J]. International Journal of Heat and Mass Transfer, 2011, 54(25/26): 5658-5662.
    [36] KIM T, HODSON H P, LU T J. Pressure loss and heat transfer mechanisms in a lattice-frame structured heat exchanger[J]. Proceedings of the Institution of Mechanical Engineers (Part C): Journal of Mechanical Engineering Science, 2004, 218(11): 1321-1336. doi: 10.1177/095440620421801104
    [37] YAN H B, YANG X H, LU T J, et al. Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core[J]. Applied Thermal Engineering, 2017, 127: 1293-1304. doi: 10.1016/j.applthermaleng.2017.08.081
    [38] YAN H B, ZHANG Q C, LU T J, et al. A lightweight X-type metallic lattice in single-phase forced convection[J]. International Journal of Heat and Mass Transfer, 2015, 83: 273-283. doi: 10.1016/j.ijheatmasstransfer.2014.11.061
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  111
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-07-12
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回