留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻巧-承力-功能一体化超结构:概念、设计及应用

康瑞 李雪 孟晗 高金翎 邓健 姜永烽 林国兴 卢天健

康瑞, 李雪, 孟晗, 高金翎, 邓健, 姜永烽, 林国兴, 卢天健. 轻巧-承力-功能一体化超结构:概念、设计及应用[J]. 应用数学和力学, 2024, 45(8): 949-973. doi: 10.21656/1000-0887.450196
引用本文: 康瑞, 李雪, 孟晗, 高金翎, 邓健, 姜永烽, 林国兴, 卢天健. 轻巧-承力-功能一体化超结构:概念、设计及应用[J]. 应用数学和力学, 2024, 45(8): 949-973. doi: 10.21656/1000-0887.450196
KANG Rui, LI Xue, MENG Han, GAO Jinling, DENG Jian, JIANG Yongfeng, LIN Guoxing, LU Tianjian. Ultralight, Compact, and Load-Bearing Multifunctional Metastructures: Concept, Design and Applications[J]. Applied Mathematics and Mechanics, 2024, 45(8): 949-973. doi: 10.21656/1000-0887.450196
Citation: KANG Rui, LI Xue, MENG Han, GAO Jinling, DENG Jian, JIANG Yongfeng, LIN Guoxing, LU Tianjian. Ultralight, Compact, and Load-Bearing Multifunctional Metastructures: Concept, Design and Applications[J]. Applied Mathematics and Mechanics, 2024, 45(8): 949-973. doi: 10.21656/1000-0887.450196

轻巧-承力-功能一体化超结构:概念、设计及应用

doi: 10.21656/1000-0887.450196
(我刊青年编委孟晗、编委卢天健来稿)
基金项目: 

国家自然科学基金 12032010

国家自然科学基金 12202188

国家自然科学基金 52361165626

详细信息
    作者简介:

    康瑞(1994—),男,工程师,博士(E-mail: kangrui0403@163.com)

    通讯作者:

    孟晗(1989—),女,教授,博士,博士生导师(通讯作者. E-mail: menghan@nuaa.edu.cn)

    卢天健(1964—),男,教授,博士,博士生导师(通讯作者. E-mail: tjlu@nuaa.edu.cn)

  • 中图分类号: O34

Ultralight, Compact, and Load-Bearing Multifunctional Metastructures: Concept, Design and Applications

(Contributed by MENG Han, M.AMM Youth Editorial Board & LU Tianjian, M.AMM Editorial Board)
  • 摘要: 高端装备在极端环境下的适应性和机动性是国防安全的核心保障,具有重要战略意义. 提高主承载结构的轻量化水平与功能性,是推动高端装备升级换代的关键环节. 高端装备在多场耦合极端环境下工作,对主承载构件的轻量化和多功能性提出了严苛要求. 现有装备的承力结构与功能(减振降噪、抗弹防爆、冲击吸能、散热隔热、吸波等)分离,造成结构和重量冗余,性能难以提升. 因此,亟需开发轻巧-承力-功能一体化超结构,推进高端装备的升级换代. 该文首次提出轻巧-承力-功能一体化超结构的概念并给出了明确的定义,然后结合实际工程应用需求对多种超结构的设计方案开展综述,最后对超结构未来的发展方向进行了展望.
    1)  (我刊青年编委孟晗、编委卢天健来稿)
  • 图  1  高端装备

    Figure  1.  High-end equipment

    图  2  数学桥与Michael F. Ashby教授

    Figure  2.  The Mathematical Bridge and professor Michael F. Ashby

    图  3  导热系数-热扩散系数Ashby图[14]

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The Ashby selection map of thermal conductivity and thermal diffusivity[14]

    图  4  Anthony G. Evans教授和John W. Hutchinson教授

    Figure  4.  Professor Anthony G. Evans and professor John W. Hutchinson

    图  5  轻巧-承力-功能一体化超结构的研究思路

    Figure  5.  Scientific problems of ultralight, compact, and load-bearing multifunctional metastructures

    图  6  设计阶段的科学问题

    Figure  6.  Scientific issues in design processes

    图  7  制造阶段的科学问题

    Figure  7.  Scientific issues in manufacturing processes

    图  8  评价体系的科学问题

    Figure  8.  Scientific issues in evaluation processes

    图  9  轻质多孔金属夹芯结构的Ashby图[60]

    Figure  9.  The Ashby plot of lightweight porous metallic sandwich structures[60]

    图  10  微穿孔波纹-蜂窝混杂结构示意图

    Figure  10.  Schematic of microperforated corrugated-honeycomb hybrid structure

    图  11  微穿孔波纹-蜂窝混杂芯体超结构(PHCH)与传统微穿孔蜂窝芯体结构(honeycomb) 及波纹未穿孔混杂芯体超结构(HCH)的吸声性能对比

    Figure  11.  Comparison of sound absorption performance between the microperforated corrugated-honeycomb hybrid metastructure (PHCH) and the conventional microperforated honeycomb structure and the hybrid-cored metastructure with microperforated corrugation only (HCH)

    图  12  弹丸以1 700 m/s速度侵彻陶瓷-金字塔金属混杂夹芯结构的过程(有限元模拟)[13]

    Figure  12.  A projectile penetrating into a ceramic prism-filled metallic pyramid hybrid sandwich at 1 700 m/s (finite element simulation)[13]

    图  13  蜂窝夹芯板的侵彻失效模式:面板种类的影响[98]

    Figure  13.  A penetration failure mode of the honeycomb sandwich panel: influence of the face sheet type[98]

    图  14  微波吸收/传输集成夹芯超结构[100]

    Figure  14.  The microwave absorption/transmission integrated sandwich metastructure[100]

    图  15  不同夹芯结构的微波吸收/传输特性对比[100]

    Figure  15.  Comparison of microwave absorption/transmission characteristics among different sandwich structures[100]

    图  16  典型夹芯结构的面外压缩强度Ashby图[100]

    Figure  16.  The Ashby plot of out-of-plane compressive strengths of selected sandwich structures[100]

    图  17  兼具轻巧、承载及电磁波吸收能力的复合材料超结构[101]

    Figure  17.  The ultralight composite honeycomb metastructure for simultaneous load-bearing and electromagnetic wave absorption[101]

  • [1] 胡记强, 王兵, 张涵其, 等. 热塑性复合材料构件的制备及其在航空航天领域的应用[J]. 宇航总体技术, 2020, 4(4): 61-70.

    HU Jiqiang, WANG Bing, ZHANG Hanqi, et al. Fabrication of thermoplastic composite components and their application in aerospace[J]. Astronautical Systems Engineering Technology, 2020, 4(4): 61-70. (in Chinese)
    [2] MARSH G. Boeing's 787: trials, tribulations, and restoring the dream[J]. Reinforced Plastics, 2009, 53(8): 16-21. doi: 10.1016/S0034-3617(09)70311-X
    [3] 吕竹文, 吴越, 付建平, 等. W型、N型反应装甲对聚能射流干扰性能研究[J]. 火炮发射与控制学报, 2019, 40(2): 57-61.

    LV Zhuwen, WU Yue, FU Jianping, et al. A study of jamming performance of W-type and N-type reaction armor to shaped jets[J]. Journal of Gun Launch & Control, 2019, 40(2): 57-61. (in Chinese)
    [4] 房凌晖, 郑翔玉, 马丽, 等. 坦克装甲车辆装甲防护发展研究[J]. 四川兵工学报, 2014, 35(2): 23-26.

    FANG Linghui, ZHENG Xiangyu, MA Li, et al. Armor protection development of tank & armored vehicle[J]. Journal of Ordnance Equipment Engineering, 2014, 35(2): 23-26. (in Chinese)
    [5] 张杜江, 赵振宇, 褚庆国, 等. 浅埋爆炸下考虑乘员安全的防雷底板设计理论模型[J/OL]. 应用力学学报, 2024: 1-11[2024-07-24]. https://kns.cnki.net/kcms/detail/61.1112.o3.20221124.1404.006.html.

    ZHANG Dujiang, ZHAO Zhenyu, CHU Qingguo, et al. Theoretical model of armored vehicle bottom plate subjected to detonation of shallow-buried explosives with occupant safety considered[J/OL]. Chinese Journal of Applied Mechanics, 2024: 1-11[2024-07-24]. https://kns.cnki.net/kcms/detail/61.1112.o3.20221124.1404.006.html. (in Chinese)
    [6] 赵振宇, 任建伟, 金峰, 等. V形防护结构研究综述[J]. 应用力学学报, 2020, 37(6): 2527-2534. doi: 10.11776/cjam.37.06.B154

    ZHAO Zhenyu, REN Jianwei, JIN Feng, et al. Investigation process on V-shape protective structures[J]. Chinese Journal of Applied Mechanics, 2020, 37(6): 2527-2534. (in Chinese) doi: 10.11776/cjam.37.06.B154
    [7] 石卿. 卡-50复合材料直升机的防弹能力[J]. 航空制造工程, 1994(5): 12-13.

    SHI Qing. Bulletproof capability of Ka-50 composite helicopter[J]. Aeronautical Manufacturing Engineering, 1994(5): 12-13. (in Chinese)
    [8] 周鑫, 陈庆童, 马子广, 等. 复合材料层合板低速冲击损伤与剩余强度分析[J]. 直升机技术, 2023(2): 33-38. doi: 10.3969/j.issn.1673-1220.2023.02.006

    ZHOU Xin, CHEN Qingtong, MA Ziguang, et al. Low-velocity impact damage and residual strength analysis of composite laminates[J]. Helicopter Technique, 2023(2): 33-38. (in Chinese) doi: 10.3969/j.issn.1673-1220.2023.02.006
    [9] 武岳, 王旭东, 刘迪, 等. 直升机陶瓷复合装甲发展现状及新型材料应用前景[J]. 航空材料学报, 2019, 39(5): 34-44.

    WU Yue, WANG Xudong, LIU Di, et al. Development and application analysis of ceramic composites armor for helicopter[J]. Journal of Aeronautical Materials, 2019, 39(5): 34-44. (in Chinese)
    [10] 胡诤哲, 李向东, 周兰伟, 等. 武装直升机在杀爆弹打击下的易损性及防护策略[J]. 北京航空航天大学学报, 2020, 46(6): 1214-1220.

    HU Zhengzhe, LI Xiangdong, ZHOU Lanwei, et al. Vulnerability and defense strategy for gunship against HE munition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1214-1220. (in Chinese)
    [11] 韩峰, 何立燕, 李晨曦. 多孔纤维材料对飞机壁板结构隔声性能的影响分析[J]. 噪声与振动控制, 2020, 40(4): 167-172. doi: 10.3969/j.issn.1006-1355.2020.04.030

    HAN Feng, HE Liyan, LI Chenxi. Effects of porous materials on the sound insulation performance of aircraft sidewalls[J]. Noise and Vibration Control, 2020, 40(4): 167-172. (in Chinese) doi: 10.3969/j.issn.1006-1355.2020.04.030
    [12] LU T J, HUTCHINSON J W, EVANS A G. Optimal design of a flexural actuator[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(9): 2071-2093. doi: 10.1016/S0022-5096(01)00024-2
    [13] NI C Y, LI Y C, XIN F X, et al. Ballistic resistance of hybrid-cored sandwich plates: numerical and experimental assessment[J]. Composites (Part A): Applied Science and Manufacturing, 2013, 46: 69-79. doi: 10.1016/j.compositesa.2012.07.019
    [14] ASHBY M F, CEBON D. Materials selection in mechanical design[J]. Le Journal de Physique IV, 1993, 3(C7): 1-9.
    [15] 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517-535. doi: 10.3321/j.issn:1000-0992.2006.04.004

    LU Tianian, HE Deping, CHEN Changqing, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006, 36(4): 517-535. (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.004
    [16] ASHBY M F, EVANS A G, FLECK N A, et al. Metal Foams: a Design Guide[M]. Woburn, MA: Butterworth-Heinemann, 2000.
    [17] CHEN C, LU T J, FLECK N A. Effect of imperfections on the yielding of two-dimensional foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(11): 2235-2272. doi: 10.1016/S0022-5096(99)00030-7
    [18] LU T J, STONE H A, ASHBY M F. Heat transfer in open-cell metal foams[J]. Acta Materialia, 1998, 46(10): 3619-3635. doi: 10.1016/S1359-6454(98)00031-7
    [19] LU T J, HESS A, ASHBY M F. Sound absorption in metallic foams[J]. Journal of Applied Physics, 1999, 85(11): 7528-7539. doi: 10.1063/1.370550
    [20] EVANS A G, HUTCHINSON J W, ASHBY M F. Cellular metals[J]. Current Opinion in Solid State and Materials Science, 1998, 3(3): 288-303. doi: 10.1016/S1359-0286(98)80105-8
    [21] VALDEVIT L, HUTCHINSON J W, EVANS A G. Structurally optimized sandwich panels with prismatic cores[J]. International Journal of Solids and Structures, 2004, 41(18/19): 5105-5124.
    [22] EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science, 2001, 46(3/4): 309-327.
    [23] WADLEY H N G, FLECK N A, EVANS A G. Fabrication and structural performance of periodic cellular metal sandwich structures[J]. Composites Science and Technology, 2003, 63(16): 2331-2343. doi: 10.1016/S0266-3538(03)00266-5
    [24] GU S, LU T J, EVANS A G. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity[J]. International Journal of Heat and Mass Transfer, 2001, 44(11): 2163-2175. doi: 10.1016/S0017-9310(00)00234-9
    [25] LU T J, VALDEVIT L, EVANS A G. Active cooling by metallic sandwich structures with periodic cores[J]. Progress in Materials Science, 2005, 50(7): 789-815. doi: 10.1016/j.pmatsci.2005.03.001
    [26] WEI Z, DHARMASENA K P, WADLEY H N G, et al. Analysis and interpretation of a test for characterizing the response of sandwich panels to water blast[J]. International Journal of Impact Engineering, 2007, 34(10): 1602-1618. doi: 10.1016/j.ijimpeng.2006.09.091
    [27] HUTCHINSON J W, XUE Z. Metal sandwich plates optimized for pressure impulses[J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 545-569.
    [28] RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure[J]. International Journal of Impact Engineering, 2005, 31(9): 1152-1171. doi: 10.1016/j.ijimpeng.2004.07.012
    [29] RADFORD D D, FLECK N A, DESHPANDE V S. The response of clamped sandwich beams subjected to shock loading[J]. International Journal of Impact Engineering, 2006, 32(6): 968-987. doi: 10.1016/j.ijimpeng.2004.08.007
    [30] RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading[J]. International Journal of Solids and Structures, 2006, 43(6): 1746-1763. doi: 10.1016/j.ijsolstr.2005.06.079
    [31] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading[J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243-2259.
    [32] MCSHANE G J, RADFORD D D, DESHPANDE V S, et al. The response of clamped sandwich plates with lattice cores subjected to shock loading[J]. European Journal of Mechanics A: Solids, 2006, 25(2): 215-229. doi: 10.1016/j.euromechsol.2005.08.001
    [33] RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of clamped rectangular Y-frame and corrugated core sandwich plates[J]. European Journal of Mechanics A: Solids, 2009, 28(1): 14-24. doi: 10.1016/j.euromechsol.2008.06.001
    [34] RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core[J]. International Journal of Impact Engineering, 2008, 35(8): 829-844. doi: 10.1016/j.ijimpeng.2007.10.006
    [35] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics, 2004, 71(3): 386-401. doi: 10.1115/1.1629109
    [36] QIU X, DESHPANDE V S, FLECK N A. Impulsive loading of clamped monolithic and sandwich beams over a central patch[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(5): 1015-1046. doi: 10.1016/j.jmps.2004.12.004
    [37] WANG X, LU T J. Optimized acoustic properties of cellular solids[J]. The Journal of the Acoustical Society of America, 1999, 106(2): 756-765. doi: 10.1121/1.427094
    [38] DUPERE I D J, DOWLING A P, LU T J. The absorption of sound in cellular foams[C]//ASME International Mechanical Engineering Congress and Exposition. Anaheim, California, USA: IMECE, 2004: 123-132.
    [39] 朱新文, 江东亮, 谭寿洪. 碳化硅网眼多孔陶瓷的微波吸收特性[J]. 无机材料学报, 2002, 17(6): 1152-1156. doi: 10.3321/j.issn:1000-324X.2002.06.011

    ZHU Xinwen, JIANG Dongliang, TAN Shouhong. Microwave absorbing property of SiC reticulated porous ceramics[J]. Journal of Inorganic Materials, 2002, 17(6): 1152-1156. (in Chinese) doi: 10.3321/j.issn:1000-324X.2002.06.011
    [40] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292: 77-79. doi: 10.1126/science.1058847
    [41] 邢丽英. 隐身材料[M]. 北京: 化学工业出版社, 2004.

    XING Liying. Stealth Materials[M]. Beijing: Chemical Industry Press, 2004. (in Chinese)
    [42] ZHAO C Y, KIM T, LU T J, et al. Thermal transport in high porosity cellular metal foams[J]. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 309-317. doi: 10.2514/1.11780
    [43] ZHAO C Y, LU T J, HODSON H P. Thermal radiation in ultralight metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2004, 47(14/16): 2927-2939.
    [44] KIM T, ZHAO C Y, LU T J, et al. Convective heat dissipation with lattice-frame materials[J]. Mechanics of Materials, 2004, 36(8): 767-780. doi: 10.1016/j.mechmat.2003.07.001
    [45] KIM T, HODSON H P, LU T J. Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material[J]. International Journal of Heat and Mass Transfer, 2005, 48(19/20): 4243-4264.
    [46] ZHAO C Y, LU T J, HODSON H P. Natural convection in metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2452-2463. doi: 10.1016/j.ijheatmasstransfer.2005.01.002
    [47] CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams[J]. Journal of Heat and Mass Transfer, 2000, 122(3): 557-565.
    [48] CALMIDI V V, MAHAIAN R L. The effective thermal conductivity of high porosity fibrous metal forms[J]. Journal of Heat and Mass Transfer, 1999, 121: 466-471.
    [49] ZHU F, WANG Z, LU G, et al. Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading[J]. International Journal of Impact Engineering, 2010, 37(6): 625-637. doi: 10.1016/j.ijimpeng.2009.11.003
    [50] 敬霖. 强动载荷作用下泡沫金属夹芯壳结构的动力学行为及其失效机理研究[D]. 太原: 太原理工大学, 2012.

    JING Lin. The dynamic mechanical behavior and failure mechanism of sandwich shells with metallic foam cores under intensive loading[D]. Taiyuan: Taiyuan University of Technology, 2012. (in Chinese)
    [51] KARAGIOZOVA D, LANGDON G S, NURICK G N, et al. The influence of a low density foam sandwich core on the response of a partially confined steel cylinder to internal air-blast[J]. International Journal of Impact Engineering, 2016, 92: 32-49. doi: 10.1016/j.ijimpeng.2015.09.010
    [52] QIN Q, WANG M, WANG Z, et al. A yield criterion and plastic analysis for physically asymmetric sandwich beam with metal foam core[J]. International Journal of Applied Mechanics, 2013, 5(4): 1350037. doi: 10.1142/S1758825113500373
    [53] WANG T, QIN Q, WANG M, et al. Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations[J]. International Journal of Impact Engineering, 2017, 105: 24-38. doi: 10.1016/j.ijimpeng.2016.10.009
    [54] ZHOU X, JING L. Deflection analysis of clamped square sandwich panels with layered-gradient foam cores under blast loading[J]. Thin-Walled Structures, 2020, 157: 107141. doi: 10.1016/j.tws.2020.107141
    [55] LI X, KANG R, LI C, et al. Dynamic responses of ultralight all-metallic honeycomb sandwich panels under fully confined blast loading[J]. Composite Structures, 2023, 311: 116791. doi: 10.1016/j.compstruct.2023.116791
    [56] HAN B, QIN K K, YU B, et al. Design optimization of foam-reinforced corrugated sandwich beams[J]. Composite Structures, 2015, 130: 51-62. doi: 10.1016/j.compstruct.2015.04.022
    [57] HAN B, QIN K, YU B, et al. Honeycomb-corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance[J]. Materials & Design, 2016, 93: 271-282.
    [58] WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores[J]. International Journal of Impact Engineering, 2020, 139: 103533. doi: 10.1016/j.ijimpeng.2020.103533
    [59] YU R P, WANG X, ZHANG Q C, et al. Effects of sand filling on the dynamic response of corrugated core sandwich beams under foam projectile impact[J]. Composites (Part B): Engineering, 2020, 197: 108135. doi: 10.1016/j.compositesb.2020.108135
    [60] YUE Z, WANG X, HE C, et al. Elevated shock resistance of all-metallic sandwich beams with honeycomb-supported corrugated cores[J]. Composites (Part B): Engineering, 2022, 242: 110102. doi: 10.1016/j.compositesb.2022.110102
    [61] GAN Y X, CHEN C, SHEN Y P. Three-dimensional modeling of the mechanical property of linearly elastic open cell foams[J]. International Journal of Solids and Structures, 2005, 42(26): 6628-6642. doi: 10.1016/j.ijsolstr.2005.03.002
    [62] YANG X, LU T J, KIM T. An analytical model for permeability of isotropic porous media[J]. Physics Letters A, 2014, 378(30/31): 2308-2311.
    [63] XIAO T, YANG X, HOOMAN K, et al. Analytical fractal models for permeability and conductivity of open-cell metallic foams[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121509. doi: 10.1016/j.ijheatmasstransfer.2021.121509
    [64] XIAO T, GUO J, YANG X, et al. On the modelling of heat and fluid transport in fibrous porous media: Analytical fractal models for permeability and thermal conductivity[J]. International Journal of Thermal Sciences, 2022, 172: 107270. doi: 10.1016/j.ijthermalsci.2021.107270
    [65] XIAO T, YANG X, HOOMAN K, et al. Conductivity and permeability of graphite foams: analytical modelling and pore-scale simulation[J]. International Journal of Thermal Sciences, 2022, 179: 107706. doi: 10.1016/j.ijthermalsci.2022.107706
    [66] ZHAO C Y, LU T J, HODSON H P. Measurements of thermal radiation in ultralight metal foams with open cells[J]. Proceedings of the Institution of Mechanical Engineers (Part C): Journal of Mechanical Engineering Science, 2004, 218(11): 1297-1307. doi: 10.1177/095440620421801102
    [67] MENG H, AO Q B, REN S W, et al. Anisotropic acoustical properties of sintered fibrous metals[J]. Composites Science and Technology, 2015, 107: 10-17. doi: 10.1016/j.compscitech.2014.11.020
    [68] MENG H, YANG X H, REN S W, et al. Sound propagation in composite micro-tubes with surface-mounted fibrous roughness elements[J]. Composites Science and Technology, 2016, 127: 158-168. doi: 10.1016/j.compscitech.2016.02.035
    [69] REN S, XIN F, LU T J, et al. A semi-analytical model for the influence of temperature on sound propagation in sintered metal fiber materials[J]. Materials & Design, 2017, 134: 513-522.
    [70] REN S, AO Q, MENG H, et al. A semi-analytical model for sound propagation in sintered fiber metals[J]. Composites (Part B): Engineering, 2017, 126: 17-26. doi: 10.1016/j.compositesb.2017.05.083
    [71] CHEN C, LU T J, FLECK N A. Effect of inclusions and holes on the stiffness and strength of honeycombs[J]. International Journal of Mechanical Sciences, 2001, 43(2): 487-504. doi: 10.1016/S0020-7403(99)00122-8
    [72] 杨茂. 波纹夹芯圆锥壳及其改进型结构的耐撞性研究与优化设计[D]. 西安: 西安交通大学, 2021.

    YANG Mao. Crashworthiness analysis and optimized design of truncated conical sandwich shells with corrugated cores and its improved structures[D]. Xi'an: Xi'an Jiaotong University, 2021. (in Chinese)
    [73] 苏鹏博. 金属波纹及其复合增强型夹芯圆柱壳耐撞性能及抗爆性能研究[D]. 西安: 西安交通大学, 2021.

    SU Pengbo. Crashworthiness and anti-blast performance of corrugated and composite reinforced corrugated sandwich cylindrical shells[D]. Xi'an: Xi'an Jiaotong University, 2021. (in Chinese)
    [74] 卢天健, 徐峰, 文婷. 周期性多孔金属材料的热流性能[M]. 北京: 科学出版社, 2010.

    LU Tianjian, XU Feng, WEN Ting. Heat Flow Properties of Periodic Porous Metal Materials[M]. Beijing: Science Press, 2010. (in Chinese)
    [75] TANG Y, LI F, XIN F, et al. Heterogeneously perforated honeycomb-corrugation hybrid sandwich panel as sound absorber[J]. Materials & Design, 2017, 134: 502-512. doi: 10.11901/1005.3093.2016.640
    [76] XIAO T, LU L, PENG W, et al. Numerical study of heat transfer and load-bearing performances of corrugated sandwich structure with open-cell metal foam[J]. International Journal of Heat and Mass Transfer, 2023, 215: 124517. doi: 10.1016/j.ijheatmasstransfer.2023.124517
    [77] SUN S, SHENG Y, FENG S, et al. Heat transfer efficiency of hierarchical corrugated sandwich panels[J]. Composite Structures, 2021, 272: 114195. doi: 10.1016/j.compstruct.2021.114195
    [78] JIANG Y, SHEN C, MENG H, et al. Design and optimization of micro-perforated ultralight sandwich structure with N-type hybrid core for broadband sound absorption[J]. Applied Acoustics, 2023, 202: 109184. doi: 10.1016/j.apacoust.2022.109184
    [79] WEN S, CHEN K, LI W, et al. Selective laser melting of reduced graphene oxide/S136 metal matrix composites with tailored microstructures and mechanical properties[J]. Materials & Design, 2019, 175: 107811.
    [80] NAZIR A, GOKCEKAYA O, BILLAH K M M, et al. Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials[J]. Materials & Design, 2023, 226: 111661.
    [81] DENG J, XUE P, YIN Q Z, et al. A three-dimensional damage analysis framework for fiber-reinforced composite laminates[J]. Composite Structures, 2022, 286: 115313. doi: 10.1016/j.compstruct.2022.115313
    [82] 邓健, 肖鹏程, 王增贤, 等. 基于黏聚区模型的ENF试件层间裂纹扩展分析[J]. 应用数学和力学, 2022, 43(5): 515-523. doi: 10.21656/1000-0887.430082

    DENG Jian, XIAO Pengcheng, WANG Zengxian, et al. Interlaminar crack propagation analysis of ENF specimens based on the cohesive zone model[J]. Applied Mathematics and Mechanics, 2022, 43(5): 515-523. (in Chinese) doi: 10.21656/1000-0887.430082
    [83] 贾振元, 赖一楠, 王福吉, 等. 复合材料构件制造关键基础科学问题: 第248期"双清论坛"学术综述[J]. 中国科学基金, 2021, 35(5): 764-773.

    JIA Zhenyuan, LAI Yinan, WANG Fuji, et al. Key basic scientific questions in composite material parts manufacturing: an academic review of the 248 Shuangqing Forum[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(5): 764-773. (in Chinese)
    [84] LI L, ZHANG Q C, ZHANG R, et al. A laboratory experimental technique for simulating combined blast and impact loading[J]. International Journal of Impact Engineering, 2019, 134: 103382. doi: 10.1016/j.ijimpeng.2019.103382
    [85] LI L, HAN B, HE S Y, et al. Shock loading simulation using density-graded metallic foam projectiles[J]. Materials & Design, 2019, 164: 107546.
    [86] GAO J, GUO Z, HERNANDEZ J A, et al. Transverse impact by RCCs on S-glass and Kevlar© FRC strips[J]. Composites (Part A): Applied Science and Manufacturing, 2021, 146: 106425. doi: 10.1016/j.compositesa.2021.106425
    [87] GAO J, KIRK C D, KEDIR N, et al. A method for characterization of multiple dynamic constitutive parameters of FRCs[J]. Composites Science and Technology, 2021, 203: 108607. doi: 10.1016/j.compscitech.2020.108607
    [88] GAO J, LIM B H, ZHAI X, et al. Failure behaviors of single high-performance fibers under transverse dynamic cut[J]. International Journal of Impact Engineering, 2020, 144: 103660. doi: 10.1016/j.ijimpeng.2020.103660
    [89] WANG X, LI X, YU R P, et al. Enhanced vibration and damping characteristics of novel corrugated sandwich panels with polyurea-metal laminate face sheets[J]. Composite Structures, 2020, 251: 112591. doi: 10.1016/j.compstruct.2020.112591
    [90] DENG J, HONG Z, YIN Q, et al. A physically-based failure analysis framework for fiber-reinforced composite laminates under multiaxial loading[J]. Composite Structures, 2020, 241: 112125. doi: 10.1016/j.compstruct.2020.112125
    [91] 韩宾. 波纹强化复合型多孔材料的力学行为研究[D]. 西安: 西安交通大学, 2015.

    HAN Bin. Mechanical behaviors of reinforced corrugated composite cellular materials[D]. Xi'an: Xi'an Jiaotong University, 2015. (in Chinese)
    [92] KANG R, SHEN C, LU T J. A three-dimensional theoretical model of free vibration for multifunctional sandwich plates with honeycomb-corrugated hybrid cores[J]. Composite Structures, 2022, 298: 115990. doi: 10.1016/j.compstruct.2022.115990
    [93] 唐宇帆. 微穿孔蜂窝-波纹复合夹层结构的吸声性能研究[D]. 西安: 西安交通大学, 2018.

    TANG Yufan. Investigation on sound absorption performances for micro-perforated honeycomb-corrugation hybrid sandwich structures[D]. Xi'an: Xi'an Jiaotong University, 2018. (in Chinese)
    [94] YUNGWIRTH C J, WADLEY H N G, O'CONNOR J H, et al. Impact response of sandwich plates with a pyramidal lattice core[J]. International Journal of Impact Engineering, 2008, 35(8): 920-936. doi: 10.1016/j.ijimpeng.2007.07.001
    [95] XIA H, HOU R, ZHANG Q, et al. Ballistic resistance of metal corrugated sandwich plates filled with high performance concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(8): 1025-1031.
    [96] WANG X, HE C, YUE Z, et al. Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels[J]. Composites (Part B): Engineering, 2022, 237: 109840. doi: 10.1016/j.compositesb.2022.109840
    [97] WANG X, YUE Z, XU X, et al. Ballistic impact response of elastomer-retrofitted corrugated core sandwich panels[J]. International Journal of Impact Engineering, 2023, 175: 104545. doi: 10.1016/j.ijimpeng.2023.104545
    [98] ZHANG R, HAN B, ZHOU Y, et al. Ballistic performance of ultralight multifunctional cellular sandwich plates with UHMWPE fiber metal laminate skins[J]. Composite Structures, 2023, 304: 116390. doi: 10.1016/j.compstruct.2022.116390
    [99] QIANG L, ZHANG R, ZHAO C, et al. Dynamic performance of ultralight corrugated sandwich plate with FML face-sheets impacted by FSP-foam composite projectile[J]. Thin-Walled Structures, 2023, 188: 110875. doi: 10.1016/j.tws.2023.110875
    [100] JIANG W, MA H, YAN L, et al. A microwave absorption/transmission integrated sandwich structure based on composite corrugation channel: design, fabrication and experiment[J]. Composite Structures, 2019, 229: 111425. doi: 10.1016/j.compstruct.2019.111425
    [101] CHENG L, SI Y, JI Z, et al. A novel linear gradient carbon fiber array integrated square honeycomb structure with electromagnetic wave absorption and enhanced mechanical performances[J]. Composite Structures, 2023, 305: 116510. doi: 10.1016/j.compstruct.2022.116510
  • 加载中
图(17)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  174
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-03
  • 修回日期:  2024-07-24
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回