留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带随机载荷振荡浮子式波能转换结构的参数优化设计与功率响应分析

王德莉 杨雯 韦玮 裴海清 徐伟

王德莉, 杨雯, 韦玮, 裴海清, 徐伟. 带随机载荷振荡浮子式波能转换结构的参数优化设计与功率响应分析[J]. 应用数学和力学, 2024, 45(12): 1515-1529. doi: 10.21656/1000-0887.450201
引用本文: 王德莉, 杨雯, 韦玮, 裴海清, 徐伟. 带随机载荷振荡浮子式波能转换结构的参数优化设计与功率响应分析[J]. 应用数学和力学, 2024, 45(12): 1515-1529. doi: 10.21656/1000-0887.450201
WANG Deli, YANG Wen, WEI Wei, PEI Haiqing, XU Wei. Parameter Optimization Design and Power Response Analysis of Oscillating Buoy Wave Energy Converters With Random Loads[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1515-1529. doi: 10.21656/1000-0887.450201
Citation: WANG Deli, YANG Wen, WEI Wei, PEI Haiqing, XU Wei. Parameter Optimization Design and Power Response Analysis of Oscillating Buoy Wave Energy Converters With Random Loads[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1515-1529. doi: 10.21656/1000-0887.450201

带随机载荷振荡浮子式波能转换结构的参数优化设计与功率响应分析

doi: 10.21656/1000-0887.450201
基金项目: 

国家自然科学基金 12372033

国家自然科学基金 12002250

陕西数理基础科学研究项目 22JSQ029

详细信息
    作者简介:

    杨雯(2002—),女,硕士生(E-mail: wyang08042@163.com)

    裴海清(1990—),男,副教授,博士(E-mail: hqpei@nwpu.edu.cn)

    通讯作者:

    王德莉(1990—),女,教授,博士(通讯作者. E-mail: dlwang@xauat.edu.cn)

  • 中图分类号: O322;O324

Parameter Optimization Design and Power Response Analysis of Oscillating Buoy Wave Energy Converters With Random Loads

  • 摘要: 振荡浮子式波能转换结构是波浪能发电系统的一类核心做功单元,它的研建对于我国沿海地区发展、海洋平台建设等方面的供电瓶颈技术推进上具有重大意义. 为研究其机械构型、参数设计、俘能机制,该文建立了多自由度波能转换结构耦合运动模型. 通过对粒子群等智能算法进行优化,克服了多自由度迭代规模过大以及局部最优解困境等问题,丰富了算法功能,定性及定量测算了波能转换结构在二/四自由度、线性/非线性阻尼、两场景结构尺寸参数调控下的振荡及俘能效果. 验证了多自由度、非线性阻尼等振控条件的俘能优势,同步探寻此类结构的动力学行为规律、参数优化设计及俘能机制高效路径. 引入随机载荷以优化模型精度并做进一步探索,总结了噪声差异引致结构俘能效果的作用规律. 为实际工程中波浪能转换结构的有效应用模式发展了新思路.
  • 图  1  振荡浮子式WEC结构概念图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Conceptual diagram of the oscillating-buoy WEC structure

    图  2  WEC结构模型示意图

    Figure  2.  Schematic diagram of the WEC structural model

    图  3  WEC结构三维时间历程图及浮子-振子相对垂荡位移

    Figure  3.  The 3D time history diagram of the WEC structure and the float-oscillator relative heaving displacement

    图  4  WEC结构三维时间历程图及振子-浮子相对位移

    Figure  4.  The 3D time history diagram of the WEC structure and the oscillator-float relative displacement

    图  5  最优阻尼系数范围搜索过程

    Figure  5.  The search process for the range of optimal damping coefficients

    图  6  修缮后黄金分割法思维流程图

    Figure  6.  The revised golden section thinking flow chart

    图  7  改良PSO算法思维流程图

    Figure  7.  Improved PSO algorithm thinking flow chart

    图  8  改良优化算法迭代过程

    Figure  8.  The iterative process of the improved optimization algorithm

    图  9  最大平均输出功率随波浪频率变化

    Figure  9.  The maximum average output power vs. the wave frequency

    图  10  模拟退火算法思维流程图

    Figure  10.  The simulated annealing algorithm thinking flow chart

    图  11  不同强度随机载荷引起波面趋势的对比

    Figure  11.  Comparison of wave surface trends caused by random loads of different intensities

    图  12  不同噪声强度下WEC结构的动力学响应特征

    Figure  12.  Dynamic response characteristics of the WEC structure at different noise intensities

    图  13  不同噪声强度下不同阻尼系数对应平均输出功率随起始时间变化

    Figure  13.  The average output power vs. the starting time corresponding to different damping coefficients under different noise intensities

    表  1  WEC结构尺寸及环境参数设置

    Table  1.   WEC structure sizes and environmental parameters

    parameter value of parameter Ⅰ value of parameter Ⅱ
    float mass m1/kg 4 866 9 732
    float bottom radius r1/m 1 2
    float cylinder height H1/m 3 6
    float cone height (H2H1)/m 0.8 1.6
    oscillator mass m2/kg 2 433 4 866
    oscillator radius r2/m 0.5 1
    oscillator heighth/m 0.5 1
    sea water density ρ/(kg/m3) 1 025 1 025
    gravitational acceleration g/(m/s2) 9.8 9.8
    spring stiffness k0/(N/m) 80 000 80 000
    spring original length l0/m 0.5 1
    torsional spring stiffness kr/(N·m) 250 000 250 000
    下载: 导出CSV
  • [1] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12.

    LU Qing, SHI Hongda. Progress and future trend of wave energy technology in China[J]. Coastal Engineering, 2022, 41(1): 1-12. (in Chinese)
    [2] GALLUTIA D, FARD M T, SOTO M G, et al. Recent advances in wave energy conversion systems: from wave theory to devices and control strategies[J]. Ocean Engineering, 2022, 252: 111105. doi: 10.1016/j.oceaneng.2022.111105
    [3] 崔琳, 李蒙, 白旭. 海洋可再生能源技术现状与发展趋势[J]. 船舶工程, 2021, 43(10): 22-33.

    CUI Lin, LI Meng, BAI Xu. Current status and development trend of marine renewable energy technology[J]. Ship Engineering, 2021, 43(10): 22-33. (in Chinese)
    [4] WANG D L, PEI H Q, YAO J T, et al. Memory feedback signals in nonlinear coupled pitch-roll ship motions under narrow-band stochastic excitations[J]. Mechanical Systems and Signal Processing, 2023, 192: 110220. doi: 10.1016/j.ymssp.2023.110220
    [5] 蒋志杰. 单、双自由度直驱式波浪发电系统研究与控制[D]. 广州: 华南理工大学, 2022.

    JIANG Zhijie. Research and control of single double DOF direct-drive wave generation system[D]. Guangzhou: South China University of Technology, 2022. (in Chinese)
    [6] HENRIQUES J C C, GOMES R P F, GATO L M C, et al. Testing and control of a power take-off system for an oscillating-water-column wave energy converter[J]. Renewable Energy, 2016, 85: 714-724. doi: 10.1016/j.renene.2015.07.015
    [7] LI H F, SUN X W, ZHOU H. Wave energy: history, implementations, environmental impacts and economics[C]// 2 nd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2022). USA: SPIE, 2022.
    [8] JIANG Y C, PENG Y H, SUN Y, et al. Design and testing of a mechanical power take-off system for rolling-type wave energy converter[J]. International Journal of Precision Engineering and Manufacturing: Green Technology, 2021, 8(5): 1487-1499. doi: 10.1007/s40684-020-00253-z
    [9] THOMSON R C, CHICK J P, HARRISON G P. An LCA of the Pelamis wave energy converter[J]. International Journal of Life Cycle Assessment, 2019, 24(1): 51-63. doi: 10.1007/s11367-018-1504-2
    [10] 莫丽平, 卜育才. 波浪能发电装置的鹰式吸波浮体研究[J]. 上海船舶运输科学研究所学报, 2023, 46(6): 15-21.

    MO Liping, BU Yucai. Sharp eagle wave absorbing floats of wave power generation device[J]. Journal of Shanghai Ship and Shipping Research Institute, 2023, 46(6): 15-21. (in Chinese)
    [11] 吴明东, 盛松伟, 张亚群, 等. 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9(1): 42-47.

    WU Mingdong, SHENG Songwei, ZHANG Yaqun, et al. Development status and prospect of ocean wave energy buoy[J]. Advances in New and Renewable Energy, 2021, 9(1): 42-47. (in Chinese)
    [12] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1): 149-159.

    LIU Jizhen, MA Lifei, WANG Qinghua, et al. Offshore wind power supports China's energy transition[J]. Strategic Study of CAE, 2021, 23(1): 149-159. (in Chinese)
    [13] 贺彤彤. 锚泊浮台波浪能供电装置设计优化与水动力性能研究[D]. 济南: 山东大学, 2019.

    HE Tongtong. Design optimization and hydrodynamic performance study of wave energy power supply device for mooring platform[D]. Jinan: Shandong University, 2019. (in Chinese)
    [14] 李永国, 覃灿, 郑丁健, 等. 点吸式直驱波浪能转换装置优化方法综述[J]. 世界科技研究与发展, 2023, 45(3): 349-364.

    LI Yongguo, QIN Can, ZHENG Dingjian, et al. Review on optimization methods of point absorption direct drive wave energy generator[J]. World Sci-Tech R&D, 2023, 45(3): 349-364. (in Chinese)
    [15] LIANG S G, LU K, WANG H M. Research on laboratory test method of wave energy converter wave-wire conversion ratio in irregular waves[J]. Energies, 2023, 16(2): 1001. doi: 10.3390/en16021001
    [16] SHENG W A, LEWIS A. Power takeoff optimization to maximize wave energy conversions for oscillating water column devices[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 36-47. doi: 10.1109/JOE.2016.2644144
    [17] CAI Y Q, HUO Y Q, SHI X Y, et al. Numerical and experimental research on a resonance-based wave energy converter[J]. Energy Conversion and Management, 2022, 269: 116152. doi: 10.1016/j.enconman.2022.116152
    [18] SHI X L, LIANG B C, DU S T, et al. Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation[J]. Renewable Energy, 2022, 199: 1381-1407. doi: 10.1016/j.renene.2022.09.094
    [19] 曾维鸿, 傅卓佳, 汤卓超. 超水槽动力特性数值模拟的新型局部无网格配点法[J]. 应用数学和力学, 2022, 43(4): 392-400. doi: 10.21656/1000-0887.420246

    ZENG Weihong, FU Zhuojia, TANG Zhuochao. A novel localized meshless collocation method for numerical simulation of flume dynamic characteristics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 392-400. (in Chinese) doi: 10.21656/1000-0887.420246
    [20] 刘高, 陈上有, 刘天成, 等. 跨海特大型桥梁风-浪耦合作用的随机振动分析[J]. 应用数学和力学, 2017, 38(1): 75-89. doi: 10.21656/1000-0887.370553

    LIU Gao, CHEN Shangyou, LIU Tiancheng, et al. An analysis method for wind-wave coupling induced random vibration of sea-crossing super-large bridges[J]. Applied Mathematics and Mechanics, 2017, 38(1): 75-89. (in Chinese) doi: 10.21656/1000-0887.370553
    [21] LAN J, WU Y J. First-exit problem of MDOF strongly nonlinear oscillators under wide-band random excitations without internal resonances[J]. Acta Mechanica, 2017, 228(1): 175-186. doi: 10.1007/s00707-016-1713-3
    [22] WU Y J. Dynamical reliability of internally resonant or non-resonant strongly nonlinear system under random excitations[J]. Mechanical Systems and Signal Processing, 2019, 118: 767-780. doi: 10.1016/j.ymssp.2018.09.015
    [23] 顾兴远, 牛玉博, 郑阳, 等. 新型双体波浪能转换装置多自由度耦合水动力特性研究[J]. 振动与冲击, 2024, 43(4): 207-214.

    GU Xingyuan, NIU Yubo, ZHENG Yang, et al. A study on multi-degree-of-freedom coupled hydrodynamic characteristics of a novel two-body wave energy converter[J]. Journal of Vibration and Shock, 2024, 43(4): 207-214. (in Chinese)
    [24] 孙诣博, 魏莎, 丁虎, 等. 基于路径积分法的输液管道随机动态响应分析[J]. 力学学报, 2023, 55(6): 1371-1381.

    SUN Yibo, WEI Sha, DING Hu, et al. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381. (in Chinese)
    [25] CHEN J B, KONG F, PENG Y B. A stochastic harmonic function representation for non-stationary stochastic processes[J]. Mechanical Systems and Signal Processing, 2017, 96: 31-44. doi: 10.1016/j.ymssp.2017.03.048
    [26] BITTNER M, BROGGI M, BEER M. Efficient reliability analysis of stochastic dynamic first-passage problems by probability density evolution analysis with subset supported point selection[J]. Engineering Structures, 2024, 312: 118210. doi: 10.1016/j.engstruct.2024.118210
    [27] 张万超, 周亚辉, 周效国. 振荡浮子式波能转换装置动力输出系统特性研究[J]. 振动与冲击, 2020, 39(11): 38-44.

    ZHANG Wanchao, ZHOU Yahui, ZHOU Xiaoguo. Power take-off mechanism analysis of oscillating-buoy wave energy converter[J]. Journal of Vibration and Shock, 2020, 39(11): 38-44. (in Chinese)
    [28] 王德莉, 李霁, 杨雯, 等. 振荡浮子式波能装置的功率计算分析及参数设计[J]. 哈尔滨工程大学学报, 2024, 45(2): 406-414.

    WANG Deli, LI Ji, YANG Wen, et al. Power calculation analysis and parameter design of an oscillating float wave energy device[J]. Journal of Harbin Engineering University, 2024, 45(2): 406-414. (in Chinese)
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  30
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-10-10
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回