留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维准晶双材料界面断裂分析的相场法

官高菲 李彤 聂雪阳 张滢睿 徐新生 孙家斌 周震寰

官高菲, 李彤, 聂雪阳, 张滢睿, 徐新生, 孙家斌, 周震寰. 二维准晶双材料界面断裂分析的相场法[J]. 应用数学和力学, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203
引用本文: 官高菲, 李彤, 聂雪阳, 张滢睿, 徐新生, 孙家斌, 周震寰. 二维准晶双材料界面断裂分析的相场法[J]. 应用数学和力学, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203
GUAN Gaofei, LI Tong, NIE Xueyang, ZHANG Yingrui, XU Xinsheng, SUN Jiabin, ZHOU Zhenhuan. A Phase-Field Model for Interfacial Fracture in 2D Quasicrystal Bimaterials[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203
Citation: GUAN Gaofei, LI Tong, NIE Xueyang, ZHANG Yingrui, XU Xinsheng, SUN Jiabin, ZHOU Zhenhuan. A Phase-Field Model for Interfacial Fracture in 2D Quasicrystal Bimaterials[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203

二维准晶双材料界面断裂分析的相场法

doi: 10.21656/1000-0887.450203
基金项目: 

辽宁省自然科学基金(面上项目)(2023-MS-118)

详细信息
    作者简介:

    官高菲(1998—),女,博士生(E-mail: guangaofei@mail.dlut.edu.cn);周震寰(1983—),男,教授,博士(通讯作者. E-mail: zhouzh@dlut.edu.cn).

    通讯作者:

    周震寰(1983—),男,教授,博士(通讯作者. E-mail: zhouzh@dlut.edu.cn).

  • 中图分类号: O34

A Phase-Field Model for Interfacial Fracture in 2D Quasicrystal Bimaterials

  • 摘要: 针对二维十次准晶双材料的界面断裂问题,建立了用于预测其裂纹扩展路径的相场分析模型.首先,引入界面相场将离散界面转化为连续分布界面,并获得了界面相场问题的控制方程和边界条件.利用有限元方法对控制方程进行离散,并求解获得连续分布的界面相场,从而实现了对界面材料参数的弥散处理,消除了材料参数在界面处的奇异性.其次,基于FrancfortMarigo变分原理建立了二维准晶双材料的控制方程,并采用交错求解方案求解其相场分布.在数值算例中,通过与现有文献进行对比,证明了该方法的正确性,并研究了相位子场对裂纹扩展路径的影响,以及多裂纹情况的演化规律.
  • MACI-BARBER E.Quasicrystals: Fundamentals and Applications[M]. CRC Press, 2020.
    [2]杨震霆, 王雅静, 聂雪阳, 等. 含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法[J]. 应用数学和力学, 2024,45(2): 144-154. (YANG Zhenting, WANG Yajing, NIE Xueyang, et al. Symplectic isogeometric analysis coupling method for interfacial fracture of piezoelectric quasicrystal composites with notches[J].Applied Mathematics and Mechanics,2024,45(2): 144-154. (in Chinese))
    [3]赵雪芬, 卢绍楠, 马园园, 等. 一维六方准晶非周期平面内中心开口裂纹的平面热弹性问题[J]. 应用数学和力学, 2024,45(3): 303-317. (ZHAO Xuefen, LU Shaonan, MA Yuanyuan, et al. The plane thermoelastic problem of a central opening crack in the 1D hexagonal quasicrystal non-periodic plane[J].Applied Mathematics and Mechanics,2024,45(3): 303-317. (in Chinese))
    [4]张炳彩, 丁生虎, 张来萍. 一维六方准晶双材料中圆孔边共线界面裂纹的反平面问题[J]. 应用数学和力学, 2022,43(6): 639-647. (ZHANG Bingcai, DING Shenghu, ZHANG Laiping. The anti-plane problem of collinear interface cracks emanating from a circular hole in 1D hexagonal quasicrystal bi-materials[J].Applied Mathematics and Mechanics,2022,43(6): 639-647. (in Chinese))
    [5]ZHAO M, DANG H, FAN C, et al. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 1: theoretical solution[J].Engineering Fracture Mechanics,2017,179: 59-78.
    [6]DANG H, ZHAO M, FAN C, et al. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 2: numerical method[J].Engineering Fracture Mechanics,2017,180: 268-281.
    [7]FAN C, LV S, DANG H, et al. Fundamental solutions and analysis of the interface crack for two-dimensional decagonal quasicrystal bimaterial via the displacement discontinuity method[J].Engineering Analysis With Boundary Elements,2019,106: 462-472.
    [8]ZHAO M, FAN C, LU C S, et al. Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure[J].Applied Mathematics and Mechanics (English Edition),2021,42(11): 1633-1648.
    [9]ZHAO M, ZHANG X, FAN C, et al. Thermal fracture analysis of a two-dimensional decagonal quasicrystal coating structure with interface cracks[J].Mechanics of Advanced Materials and Structures,2023,30(10): 2001-2016.
    [10]TREBIN H R, MIKULLA R, STADLER J, et al. Molecular dynamics simulations of crack propagation in quasicrystals[J].Computer Physics Communications,1999,121/122: 536-539.
    [11]KRDZALIC G, BRUNELLI M, TREBIN H R. Temperature dependence of dislocation motion and crack propagation in a two-dimensional binary model quasicrystal[J/OL].MRS Online Proceedings Library,2001,643(1): 71[2024-08-16]. https://link.springer.com/article/10.1557/PROC-643-K7.1.
    [12]RUDHART C, TREBIN H R, GUMBSCH P. Crack propagation in perfectly ordered and random tiling quasicrystals[J].Journal of Non-Crystalline Solids,2004,334/335: 453-456.
    [13]RSCH F, RUDHART C, ROTH J, et al. Dynamic fracture of icosahedral model quasicrystals: a molecular dynamics study[J].Physical Review B,2005,72: 014128.
    [14]JUNG D Y, STEURER W. Mechanical properties of clusters in quasicrystal approximants: the example of the 1/1 Al-Cu-Fe approximant[J].Physical Review B,2011,84(5): 054116.
    [15]吴祥法, 范天佑, 安冬梅. 用路径守恒积分计算平面准晶裂纹扩展的能量释放率[J]. 计算力学学报, 2000,17(1): 34-42. (WU Xiangfa, FAN Tianyou, AN Dongmei. Energy release rate of plane quasicrystals with crack determined by path-independent E-integral[J].Chinese Journal of Computational Mechanics,2000,17(1): 34-42. (in Chinese))
    [16]ZHU A Y, FAN T Y. Dynamic crack propagation in decagonal Al-Ni-Co quasicrystal[J].Journal of Physics:Condensed Matter,2008,20(29): 295217.
    [17]TUPHOLME G E. An antiplane shear crack moving in one-dimensional hexagonal quasicrystals[J].International Journal of Solids and Structures,2015,71: 255-261.
    [18]LI T, YANG Z T, XU C H, et al. A phase field approach to two-dimensional quasicrystals with mixed mode cracks[J].Materials,2023,16(10): 3628.
    [19]ZHANG Z G, ZHANG B W, LI X, et al. A closed-form solution to the mechanism of interface crack formation with one contact area in decagonal quasicrystal bi-materials[J].Crystals,2024,14(4): 316.
    [20]ZHENG R F, LIU H N, LI P D, et al. Elliptic crack problem under shear mode in one-dimensional hexagonal quasicrystals with crack surface parallel to the quasiperiodic axis[J].International Journal of Solids and Structures,2024,288: 112601.
    [21]苏玉昆, 马涛, 赵晓鑫, 等. 基于有限元技术的疲劳裂纹扩展方法研究进展[J]. 力学进展, 2024,54(2): 308-343. (SU Yukun, MA Tao, ZHAO Xiaoxin, et al. Research progress of fatigue crack propagation method based on finite element technology[J].Advances in Mechanics,2024,54(2): 308-343. (in Chinese))
    [22]赵高乐, 齐红宇, 李少林, 等. 燃气涡轮发动机关键部件疲劳小裂纹研究进展[J]. 力学进展, 2023,53(4): 819-865. (ZHAO Gaole, QI Hongyu, LI Shaolin, et al. Review of fatigue small cracks in key components of gas turbine engines[J].Advances in Mechanics,2023,53(4): 819-865. (in Chinese))
    [23]裘沙沙, 刘星泽, 宁文杰, 等. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024,45(4): 391-399. (QIU Shasha, LIU Xingze, NING Wenjie, et al. A three-dimensional adaptive finite element method for phase-field models of fracture[J].Applied Mathematics and Mechanics, 2024,45(4): 391-399. (in Chinese))
    [24]SUN T Y, GUO J H, PAN E. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium[J].Applied Mathematics and Mechanics,2021,42(8): 1077-1094.
    [25]ZHANG M, GUO J H, LI Y S. Bending and vibration of two-dimensional decagonal quasicrystal nanoplatesvia modified couple-stress theory[J].Applied Mathematics and Mechanics,2022,43(3): 371-388.
    [26]陈韬, 郭俊宏, 田园. 一维六方准晶层合简支梁自由振动与屈曲的精确解[J]. 固体力学学报, 2023,44(1): 109-119. (CHEN Tao, GUO Junhong, TIAN Yuan. Exact solution of free vibration and buckling of one-dimensional hexagonal simply-supported and layered quasicrystal beams[J].Chinese Journal of Solid Mechanics,2023,44(1): 109-119. (in Chinese))
    [27]原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024,45(2): 208-219. (YUAN Qingdan, GUO Junhong. Nonlocal vibration, buckling and bending of 1D layered quasicrystal nanobeams[J].Applied Mathematics and Mechanics,2024,45(2): 208-219. (in Chinese))
    [28]MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J].Computer Methods in Applied Mechanics and Engineering,2010,199(45/48): 2765-2778.
    [29]FAN T.Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011.
    [30]YUAN J H, WANG L, CHEN C P. Interfacial fracture analysis for heterogeneous materials based on phase field model[J].Computational Materials Science,2023,220: 112066.
    [31]FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J].Journal of the Mechanics and Physics of Solids,1998,46(8): 1319-1342.
    [32]MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations[J].International Journal for Numerical Methods in Engineering,2010,83(10): 1273-1311.
    [33]MOLNR G, GRAVOUIL A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J].Finite Elements in Analysis and Design,2017,130: 27-38.
    [34]袁彦鹏. 准晶材料平面断裂问题分析[D]. 郑州: 郑州大学, 2018. (YUAN Yanpeng. Analysis of plane fracture problem of quasicrystal[D]. Zhenzhou: Zhenzhou University, 2018. (in Chinese))
    [35]NGUYEN V P, NGUYEN G D, NGUYEN C T, et al. Modelling complex cracks with finite elements: a kinematically enriched constitutive model[J].International Journal of Fracture,2017,203(1): 21-39.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  14
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 修回日期:  2024-08-16
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回