• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性特性的磁电效应分析模型研究

郑建校 王楚友 刘金颂 周立明 张卯

郑建校, 王楚友, 刘金颂, 周立明, 张卯. 基于非线性特性的磁电效应分析模型研究[J]. 应用数学和力学, 2025, 46(12): 1560-1570. doi: 10.21656/1000-0887.450238
引用本文: 郑建校, 王楚友, 刘金颂, 周立明, 张卯. 基于非线性特性的磁电效应分析模型研究[J]. 应用数学和力学, 2025, 46(12): 1560-1570. doi: 10.21656/1000-0887.450238
ZHENG Jianxiao, WANG Chuyou, LIU Jinsong, ZHOU Liming, ZHANG Mao. Analytical Modeling of Magneto-Electric Effects Based on Nonlinear Properties[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1560-1570. doi: 10.21656/1000-0887.450238
Citation: ZHENG Jianxiao, WANG Chuyou, LIU Jinsong, ZHOU Liming, ZHANG Mao. Analytical Modeling of Magneto-Electric Effects Based on Nonlinear Properties[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1560-1570. doi: 10.21656/1000-0887.450238

基于非线性特性的磁电效应分析模型研究

doi: 10.21656/1000-0887.450238
基金项目: 

国家自然科学基金 52002309

陕西省自然科学基础研究计划 2023-JC-YB-313

陕西省自然科学基础研究计划 2023-JC-YB-294

详细信息
    作者简介:

    郑建校(1975—),男,副教授,博士,硕士生导师(E-mail: zjx@xauat.edu.cn)

    王楚友(2001—),男,硕士生(E-mail: 1732230035@qq.com)

    通讯作者:

    刘金颂(1981—),女,副教授,博士(通讯作者. E-mail: 592362106@qq.com)

  • 中图分类号: TB331;TM201.3

Analytical Modeling of Magneto-Electric Effects Based on Nonlinear Properties

  • 摘要: 针对磁致伸缩材料中复杂的非线性磁-力耦合关系以及磁电复合材料之间的界面耦合问题,提出了一种基于等效电路法的磁电效应分析模型. 根据磁致伸缩材料Tb0.3Dy0.7Fe1.92(Terfenol-D)的非线性模型,通过理论推导得到磁致伸缩材料在复杂非线性磁-力耦合条件下的磁致伸缩系数、压磁系数以及相对磁导率的表达式,并将其等效在磁致伸缩材料线性本构方程中. 采用等效电路法分别对磁致伸缩材料Terfenol-D和压电材料Pb(Zr, Ti)O3(PZT)进行建模,并引入界面耦合系数将两个等效电路进行耦合. 将压磁系数与磁电电压系数的理论预测值与试验数据对比,验证了等效参数表达式以及非线性理论模型的有效性. 研究表明,磁电电压系数与层合比、界面耦合系数以及外加磁场有着密切的关系. 研究结果为磁电复合材料磁电效应的优化提供了理论指导.
  • 图  1  L-T模式磁电层合材料示意图

    Figure  1.  Schematic of the L-T mode magneto-electric laminated material

    图  2  磁致伸缩层的等效电路

    Figure  2.  The equivalent circuit of the magnetostrictive layer

    图  3  自由振动时磁致伸缩层的等效电路

    Figure  3.  The equivalent circuit of the magnetostrictive layer during free vibration

    图  4  压电层的等效电路

    Figure  4.  The equivalent circuit of the piezoelectric layer

    图  5  自由振动时压电层的等效电路

    Figure  5.  The equivalent circuit of the piezoelectric layer during free vibration

    图  6  磁电层合等效电路

    Figure  6.  The magnetoelectric lamination equivalent circuit

    图  7  压磁系数的理论预测结果与试验结果对比

    Figure  7.  Comparison of predicted and experimental results of piezomagnetic coefficients

    图  8  磁电电压系数的理论预测结果与文献结果对比

    Figure  8.  Theoretical prediction of magnetoelectric voltage coefficients compared to experimental results

    图  9  不同界面耦合系数下磁电电压系数与层合比的关系

    Figure  9.  Magnetoelectric voltage coefficients vs. layer ratios for different interfacial coupling coefficients

    图  10  最佳磁电电压系数、最佳层合比与界面耦合系数之间的关系

      为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  10.  Relationships between the optimal magnetoelectric voltage coefficient, the optimal lamination ratio and the interfacial coupling coefficient

    图  11  最佳磁电电压系数和相应的外加磁场与界面耦合系数之间的关系

      为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  11.  Relationships between the optimal magnetoelectric voltage coefficient, the corresponding applied magnetic field and the interface coupling coefficient

    表  1  压电层材料参数

    Table  1.   Piezo layer material parameters

    material s11E/(10-12 m2/N) d31p/(10-12 C/N) k31
    PMN-PT 141.3 -2 645 0.95
    PZT 16.5 -270 0.38
    下载: 导出CSV
  • [1] SHI S H, LI P, JIN F. The mechanical analysis of thermo-magneto-electric laminated composites in nanoscale with the consideration of surface and flexoelectric effects[J]. Smart Materials and Structures, 2018, 27(1): 015018. doi: 10.1088/1361-665X/aa995c
    [2] ZHOU J P, YANG Y, ZHANG G B, et al. Symmetric relationships between direct and converse magnetoelectric effects in laminate composites[J]. Composite Structures, 2016, 155: 107-117. doi: 10.1016/j.compstruct.2016.08.009
    [3] 黄颖妆, 齐岩, 杜安, 等. 复合多铁链的磁电耦合行为与外场调控[J]. 物理学报, 2018, 67(24): 225-233.

    HUANG Yingzhuang, QI Yan, DU An, et al. Magnetoelectric coupling and external field modulation of a composite multiferroic chain[J]. Acta Physica Sinica, 2018, 67(24): 225-233. (in Chinese)
    [4] BURDIN D A, CHASHIN D V, EKONOMOV N A, et al. Nonlinear magnetoelectric effects in a composite ferromagnetic-piezoelectric structure under harmonic and noise magnetic pumping[J]. Journal of Magnetism and Magnetic Materials, 2018, 449: 505-509. doi: 10.1016/j.jmmm.2017.10.096
    [5] TALLEB H, GENSBITTEL A, REN Z. Multiphysics modeling of a magnetoelectric composite Rosen-type device[J]. Composite Structures, 2016, 137: 1-8. doi: 10.1016/j.compstruct.2015.11.001
    [6] HARSHE G, DOUGHERTY J P, NEWNHAM R. Theoretical modelling of multilayer magnetoelectric composites[J]. International Journal of Applied Electromagnetics in Materials, 1993, 4(2): 145-145.
    [7] HARSHE G, DOUGHERTY J P, NEWNHAM R E. Magnetoelectric effect in composite materials[J]. Mathematics in Smart Structures, 1993, 1919: 224.
    [8] AVELLANEDA M, HARSHE G. Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(4): 501-513. doi: 10.1177/1045389X9400500406
    [9] BICHURIN M I, PETROV V M, SRINIVASAN G. Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites[J]. Journal of Applied Physics, 2002, 92(12): 7681-7683. doi: 10.1063/1.1522834
    [10] BICHURIN M I, FILIPPOV D A, PETROV V M, et al. Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites[J]. Physical Review B, 2003, 68(13): 132408. doi: 10.1103/PhysRevB.68.132408
    [11] NAN C W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases[J]. Physical Review B, 1994, 50(9): 6082-6088. doi: 10.1103/PhysRevB.50.6082
    [12] NAN C W, LI M, HUANG J H. Calculations of giant magnetoelectric effects in ferroic composites of rare-eart-iron alloys and ferroelectric polymers[J]. Physical Review B, 2001, 63(14): 144415. doi: 10.1103/PhysRevB.63.144415
    [13] NAN C W, LI M, FENG X Q, et al. Possible giant magnetoelectric effect of ferromagnetic rare-earth-iron-alloys-filled ferroelectric polymers[J]. Appl Phys Lett, 2001, 78(17): 2527-2529. doi: 10.1063/1.1367293
    [14] DONG S X, ZHAI J Y. Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites[J]. Chinese Science Bulletin, 2008, 53(14): 2113-2123. doi: 10.1007/s11434-008-0304-7
    [15] DONG S X, LI J F, VIEHLAND D. Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: experiments[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(7): 794-799. doi: 10.1109/TUFFC.2004.1320738
    [16] LIU X E, ZHENG X J. A nonlinear constitutive model for magnetostrictive materials[J]. Acta Mechanica Sinica, 2005, 21(3): 278-285. doi: 10.1007/s10409-005-0028-8
    [17] ZHENG X J, LIU X E. A nonlinear constitutive model for Terfenol-D rods[J]. Journal of Applied Physics, 2005, 97(5): 053901. doi: 10.1063/1.1850618
    [18] 郁国良. 基于磁致伸缩/压电层状复合材料的磁电效应研究[D]. 成都: 电子科技大学, 2018.

    YU Guoliang. Study on magnetoelectric effect based on magnetostrictive/piezoelectric layered composites[D]. Chengdu: University of Electronic Science and Technology of China, 2018. (in Chinese)
    [19] RYU J, CARAZO A V, UCHINO K, et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites[J]. Japanese Journal of Applied Physics, 2001, 40(8): 4948.
    [20] RYU J, PRIYA S, CARAZO A V, et al. Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/Terfenol-D laminate composites[J]. Journal of the American Ceramic Society, 2001, 84(12): 2905-2908. doi: 10.1111/j.1151-2916.2001.tb01113.x
    [21] 楼国峰, 于歆杰, 卢诗华. 引入界面耦合系数的长片型磁电层状复合材料的等效电路模型[J]. 物理学报, 2018, 67(2): 027501.

    LOU Guofeng, YU Xinjie, LU Shihua. Equivalent circuit model of long-slice magnetoelectric layered composites with interface coupling coefficients[J]. Acta Physica Sinica, 2018, 67(2): 027501. (in Chinese)
    [22] FANG F, ZHOU Y Y, XU Y T, et al. Magnetoelectric coupling of multiferroic composites under combined magnetic and mechanical loadings[J]. Smart Material Structures, 2013, 22(7): 075009. doi: 10.1088/0964-1726/22/7/075009
    [23] WANG Y, OR S W, CHAN H L W, et al. Enhanced magnetoelectric effect in longitudinal-transverse mode Terfenol-D/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composites with optimal crystal cut[J]. Journal of Applied Physics, 2008, 103(12): 124511. doi: 10.1063/1.2943267
    [24] YANG C H, WEN Y M, LI P, et al. Influence of bias magnetic field on magnetoelectric effect of magnetostrictive/elastic/piezoelectric laminated composite[J]. Acta Physica Sinica, 2008, 57(11): 7292. doi: 10.7498/aps.57.7292
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  33
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2025-02-26
  • 刊出日期:  2025-12-01

目录

    /

    返回文章
    返回