• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环空固相沉降对深水圈闭压力的影响机制及预测模型研究

孔祥伟 温帅 谢广宇 吴红建

孔祥伟, 温帅, 谢广宇, 吴红建. 环空固相沉降对深水圈闭压力的影响机制及预测模型研究[J]. 应用数学和力学, 2025, 46(12): 1571-1583. doi: 10.21656/1000-0887.450247
引用本文: 孔祥伟, 温帅, 谢广宇, 吴红建. 环空固相沉降对深水圈闭压力的影响机制及预测模型研究[J]. 应用数学和力学, 2025, 46(12): 1571-1583. doi: 10.21656/1000-0887.450247
KONG Xiangwei, WEN Shuai, XIE Guangyu, WU Hongjian. Study on the Influence Mechanism of Annular Solid Phase Settling on Deepwater Trapped Pressure and the Prediction Model[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1571-1583. doi: 10.21656/1000-0887.450247
Citation: KONG Xiangwei, WEN Shuai, XIE Guangyu, WU Hongjian. Study on the Influence Mechanism of Annular Solid Phase Settling on Deepwater Trapped Pressure and the Prediction Model[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1571-1583. doi: 10.21656/1000-0887.450247

环空固相沉降对深水圈闭压力的影响机制及预测模型研究

doi: 10.21656/1000-0887.450247
基金项目: 

国家人才专项基金 SQ2022QB05933

详细信息
    作者简介:

    孔祥伟(1982—),男,教授,博士生导师(E-mail: 76922591@qq.com)

    通讯作者:

    温帅(1998—),男,硕士生(通讯作者. E-mail: 514706493@qq.com)

  • 中图分类号: O347.4

Study on the Influence Mechanism of Annular Solid Phase Settling on Deepwater Trapped Pressure and the Prediction Model

  • 摘要: 深水油气开采作业中,精准预测环空圈闭压力对保障油气井安全、优化开采流程以及延长油气井使用寿命具有决定性意义. 本研究聚焦水基环空液体,系统测试了多种沉降时间下的密度及热物性参数,梳理出固相沉降对液体参数的影响规律. 基于定容热力学定律,考虑固相沉淀、液体热物性参数动态变化等关键因素,提出了适用于气井的多环空耦合圈闭压力计算方法. 将该方法的计算结果与水下井口实测圈闭压力对比,二者最大误差仅为8.91%. 以海上某典型采气井为具体实例,运用.Net语言编写程序,对所构建的模型进行求解运算. 结果表明,考虑固相沉降对环空液体密度影响极为显著,随着沉降时间的持续增加,液体密度呈现出明显的下降趋势. 经过7 d的测试,钻井液密度从初始的1.7 g/cm3逐步降低至1.23 g/cm3并趋于稳定,密度降幅高达27.65%. 随着井深增加、采气量上升、钻井液等压膨胀系数以及等温压缩系数增大,环空圈闭压力均呈现增大趋势. 在流体热物性相同的情况下,环空圈闭压力受环空封闭体积的影响尤为突出:第1环空圈闭压力达到23.2 MPa;第2环空圈闭压力为15.53 MPa;第3环空圈闭压力则为7.69 MPa. 对比井口油管位移与井底情况时发现,井口油管位移最大距离从1.69×10-6 m减小至6.1×10-7 m,井口油管位移距离约为井底的2.77倍. 环空圈闭压力的准确求解,能够为校核管柱安全系数、评估井口抬升风险以及优化水泥返高设计等实际工程作业,提供极为关键的理论依据与数据支撑,有力推进深水油气开采作业安全、高效开展.
  • 图  1  环空体积圈闭井身结构示意图

    Figure  1.  Schematic diagram of the wellbore structure with an annular volume trap

    图  2  考虑固相沉降的不同时间钻井液密度变化测试数据

    Figure  2.  Test data of drilling fluid density changes at different moments considering solid-phase settling

    图  3  考虑固相沉降钻井液等温压缩系数测试数据

    Figure  3.  Test data of isothermal compression coefficients of drilling fluid considering solid-phase settling

    图  4  考虑固相沉降钻井液等压膨胀系数测试数据

    Figure  4.  Test data of isobaric expansion coefficients of drilling fluid considering solid-phase settling

    图  5  环空圈闭压力求解流程图

    Figure  5.  The flow chart for solving annular trap pressure

    图  6  南海深水高温高压气井X井现场实测数据与计算结果对比[22]

    Figure  6.  Comparison between field-measured data and calculated results of well X (a deepwater high-temperature and high-pressure gas well) in the South China Sea[22]

    图  7  第1环空不同产气量油管温度变化分析

    Figure  7.  Analysis of temperature changes in oil pipes with different gas production rates

    图  8  不同产气量环空1—3圈闭压力分析

    Figure  8.  Analysis of trap pressures in annulus 1- annulus 3 with different gas production rates

    图  9  不同沉降天数对第1环空钻井液圈闭压力

    Figure  9.  The effects of different settlement days on the pressure of the 1st annular liquid trap

    图  10  沉降稳定条件下的环空1-3圈闭压力分析

    Figure  10.  Analysis of trap pressures in annulus 1- annulus 3 under stable settlement conditions

    图  11  圈闭引起的套管位移变化分析

    Figure  11.  Changes in casing displacements caused by trapping

    图  12  不同井深圈闭压力分析

    Figure  12.  Analysis of trapped pressures at different well depths

    表  1  第1—3环空管柱内外径特性参数

    Table  1.   Key parameters of tubing outer and inner diameters in the 1st to 3rd annuluses

    parameter tube 1st annulus 2nd annulus 3rd annulus
    outer diameter/mm 88.9 177.8 244.5 339.7
    inner diameter/mm 73 166.1 216.8 320.4
    Poisson’s ratio 0.3 0.3 0.3 0.3
    expansion coefficient 0.000 018 2 0.000 018 2 0.000 018 2 0.000 018 2
    modulus/GPa 205 205 205 205
    下载: 导出CSV

    表  2  不考虑钻井液固相沉降圈闭压力误差数据对比表

    Table  2.   Comparison of pressure error data for solid phase settling traps without regard to drilling fluid solid phase settling

    well depth/m 100 1 200 1 800 2 400 3 000 3 600 4 200 4 800 5 400 6 000
    without settling trapped pressure /MPa 1.50 6.78 9.44 11.95 14.30 16.50 18.54 20.42 22.16 23.20
    3 d of settling trapped pressure/MPa 1.10 5.24 7.28 9.16 10.89 12.46 13.88 15.15 16.26 16.90
    without error/% 26.82 22.75 22.93 23.32 23.84 24.43 25.10 25.82 26.61 27.16
    5 d of settling trapped pressure/MPa 0.84 4.29 5.96 7.47 8.83 10.03 11.07 11.97 12.70 13.10
    without erro/% 44.24 36.70 36.90 37.48 38.28 39.21 40.26 41.41 42.66 43.53
    7 d of settling trapped pressure/MPa 0.50 3.50 4.91 6.17 7.28 8.23 9.03 9.68 10.16 10.40
    without erro/% 66.95 48.45 47.97 48.32 49.07 50.08 51.27 52.62 54.12 55.17
    下载: 导出CSV
  • [1] 石榆帆, 唐宜家, 马天寿, 等. 深水环空圈闭压力的破裂盘泄压控制模型[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 153-160.

    SHI Yufan, TANG Yijia, MA Tianshou, et al. Pressure relief control model of rupture disk for annular pressure build-up in deep-water wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(5): 153-160. (in Chinese)
    [2] 陈彬, 王彪, 严德, 等. 海洋油气井圈闭压力最大许可值确定方法[J]. 中国科技论文, 2025, 20(1): 30-40.

    CHEN Bin, WANG Biao, YAN De, et al. Research on the determination method for maximum allowable value of trap pressure in offshore oil and gas wells[J]. China Sciencepaper, 2025, 20(1): 30-40. (in Chinese)
    [3] WILLIAMSON R, SANDERS W, JAKABOSKY T, et al. Control of contained-annulus fluid pressure buildup[C]//SPE/IADC Drilling Conference. Amsterdam, Netherlands. Richardson: Society of Petroleum Engineers, 2003: SPE 79875-MS.
    [4] AZZOLA J H, TSELEPIDAKIS D P, PATTILLO P D, et al. Application of vacuum-insulated tubing to mitigate annular pressure buildup[J]. SPE Drilling & Completion, 2007, 22(1): 46-51.
    [5] HASAN A R, IZGEC B, KABIR C S. Ensuring sustained production by managing annular-pressure buildup[C]//EUROPEC/EAGE Conference and Exhibition. Amsterdam, The Netherlands. Richardson: Society of Petroleum Engineers, 2009: SPE 121754-MS.
    [6] 孔祥伟, 林元华, 何龙, 等. 钻井多相流体运移特性及套压控制研究[J]. 应用力学学报, 2015, 32(5): 823-827.

    KONG Xiangwei, LIN Yuanhua, HE Long, et al. Migration characteristics and control of back pressure for multiphase fluid along wellbore in drilling operations[J]. Chinese Journal of Applied Mechanics, 2015, 32(5): 823-827. (in Chinese)
    [7] VARGO R F, PAYNE M, FAUL R, et al. Practical and successful prevention of annular pressure buildup on the marlin project[J]. SPE Drilling & Completion, 2003, 18(3): 228-234.
    [8] 宋闯, 张晓诚, 谢涛, 等. 渤海"三高"气井环空早期圈闭压力预测[J]. 石油学报, 2022, 43(5): 694-707.

    SONG Chuang, ZHANG Xiaocheng, XIE Tao, et al. Prediction of early annular trap pressure of three-high gas wells in Bohai Sea[J]. Acta Petrolei Sinica, 2022, 43(5): 694-707. (in Chinese)
    [9] ADAMS A J. How to design for annulus fluid heat-up[C]//SPE Annual Technical Conference and Exhibition. Dallas, Texas. Richardson: Society of Petroleum Engineers, 1991: 529-540.
    [10] 姜海龙, 朱培旺, 徐东华. 考虑气体加速效应的高压气井产能方程推导及其应用[J]. 应用数学和力学, 2020, 41(2): 134-142. doi: 10.21656/1000-0887.400030

    JIANG Hailong, ZHU Peiwang, XU Donghua. Derivation and application of productivity equations for high-pressure gas reservoirs with gas acceleration effects[J]. Applied Mathematics and Mechanics, 2020, 41(2): 134-142. (in Chinese) doi: 10.21656/1000-0887.400030
    [11] LODER T, EVANS J H, GRIFFITH J E. Prediction of and effective preventative solution for annular fluid pressure buildup on subsea completed wells-case study[C]//SPE Annual Technical Conference and Exhibition. Denver, Colorado. Richardson: Society of Petroleum Engineers, 2003: SPE 84270-MS.
    [12] 张更, 李军, 柳贡慧, 等. 深水油气井全生命周期环空圈闭压力预测模型[J]. 石油机械, 2022, 50(4): 49-55.

    ZHANG Geng, LI Jun, LIU Gonghui, et al. Prediction model of annular trapped pressure in the whole life cycle of deepwater oil and gas wells[J]. China Petroleum Machinery, 2022, 50(4): 49-55. (in Chinese)
    [13] 杨进, 唐海雄, 刘正礼, 等. 深水油气井套管环空压力预测模型[J]. 石油勘探与开发, 2013, 40(5): 616-619.

    YANG Jin, TANG Haixiong, LIU Zhengli, et al. Prediction model of casing annulus pressure for deepwater well drilling and completion operation[J]. Petroleum Exploration and Development, 2013, 40(5): 616-619. (in Chinese)
    [14] 张波, 管志川, 张琦. 深水油气井开采过程环空压力预测与分析[J]. 石油学报, 2015, 36(8): 1012-1017.

    ZHANG Bo, GUAN Zhichuan, ZHANG Qi. Prediction and analysis on annular pressure of deepwater well in the production stage[J]. Acta Petrolei Sinica, 2015, 36(8): 1012-1017. (in Chinese)
    [15] 刘劲歌. 深水油气井开采期间环空压力预测及释放机理研究[D]. 北京: 中国石油大学(北京), 2017.

    LIU Jinge. Research on the annular pressure buildup and mitigation mechanism in deepwater wells[D]. Beijing: China University of Petroleum (Beijing), 2017. (in Chinese)
    [16] 曾静. 深水套管及水下井口温压效应研究[D]. 北京: 中国石油大学(北京), 2019.

    ZENG Jing. Coupling effect of temperature and pressure on deepwater casing and subsea wellhead[D]. Beijing: China University of Petroleum (Beijing), 2019. (in Chinese)
    [17] 孔祥伟, 刘祚才, 靳彦欣. 川渝裂缝性地层自动压井环空多相压力波速特性研究[J]. 应用数学和力学, 2022, 43(12): 1370-1379. doi: 10.21656/1000-0887.430006

    KONG Xiangwei, LIU Zuocai, JIN Yanxin. Study on multiphase pressure wave velocity characteristics of automatic kill annulus in Chuanyu fractured formation[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1370-1379. (in Chinese) doi: 10.21656/1000-0887.430006
    [18] 朱德武, 何汉平. 凝析气井井筒温度分布计算[J]. 天然气工业, 1998, 18(1): 60-62.

    ZHU Dewu, HE Hanping. Calculation of well bore temperature distribution in condensate gas well[J]. Natural Gas Industry, 1998, 18(1): 60-62. (in Chinese)
    [19] 孔祥伟, 董巧玲, 叶佳杰. 储气库采-关作业油管气相波动压力分析[J]. 石油钻探技术, 2023, 51(6): 93-98.

    KONG Xiangwei, DONG Qiaoling, YE Jiajie. Analysis of gas phase fluctuation pressure in oil pipes during production and shutdown operations of gas storage[J]. Petroleum Drilling Techniques, 2023, 51(6): 93-98. (in Chinese)
    [20] 邓元洲, 陈平, 张慧丽. 迭代法计算油气井密闭环空压力[J]. 海洋石油, 2006, 26(2): 93-96.

    DENG Yuanzhou, CHEN Ping, ZHANG Huili. Calculating the pressure in sealed annulus in oil well by iterative method[J]. Offshore oil, 2006, 26(2): 93-96. (in Chinese)
    [21] 周传义. 海上深水井环空圈闭压力研究[D]. 北京: 中国石油大学(北京), 2023.

    ZHOU Chuanyi. Annular pressure study of offshore deepwater wells[D]. Beijing: China University of Petroleum (Beijing), 2023. (in Chinese)
    [22] 刘书杰, 罗鸣, 马传华, 等. 深水高温高压气井环空圈闭压力下油管柱安全评价方法[J]. 科学技术与工程, 2024, 24(12): 4959-4968.

    LIU Shujie, LUO Ming, MA Chuanhua, et al. Safety evaluation method for tubing strings under annular trapping pressure in deep water high temperature and high pressure gas wells[J]. Science Technology and Engineering, 2024, 24(12): 4959-4968. (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  30
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-10
  • 修回日期:  2025-04-06
  • 刊出日期:  2025-12-01

目录

    /

    返回文章
    返回