留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铸态TiZrNbV晶体塑性本构模型的参数分析与参数反演

马培源 林玉亮 陈荣

马培源, 林玉亮, 陈荣. 铸态TiZrNbV晶体塑性本构模型的参数分析与参数反演[J]. 应用数学和力学, 2025, 46(5): 563-581. doi: 10.21656/1000-0887.450264
引用本文: 马培源, 林玉亮, 陈荣. 铸态TiZrNbV晶体塑性本构模型的参数分析与参数反演[J]. 应用数学和力学, 2025, 46(5): 563-581. doi: 10.21656/1000-0887.450264
MA Peiyuan, LIN Yuliang, CHEN Rong. Parametric Analysis and Parameter Inversion of the Crystal Plasticity Constitutive Model for as-Cast TiZrNbV Refractory High Entropy Alloys[J]. Applied Mathematics and Mechanics, 2025, 46(5): 563-581. doi: 10.21656/1000-0887.450264
Citation: MA Peiyuan, LIN Yuliang, CHEN Rong. Parametric Analysis and Parameter Inversion of the Crystal Plasticity Constitutive Model for as-Cast TiZrNbV Refractory High Entropy Alloys[J]. Applied Mathematics and Mechanics, 2025, 46(5): 563-581. doi: 10.21656/1000-0887.450264

铸态TiZrNbV晶体塑性本构模型的参数分析与参数反演

doi: 10.21656/1000-0887.450264
基金项目: 

国家自然科学基金(12072369;12072368);湖南省杰出青年基金(2022JJ10058)

详细信息
    作者简介:

    马培源(1997—),男,博士生(E-mail: mapeiyuan@nudt.edu.cn);陈荣(1981—),男,教授,博士,博士生导师(通讯作者. E-mail: r_chen@nudt.edu.cn).

    通讯作者:

    陈荣(1981—),男,教授,博士,博士生导师(通讯作者. E-mail: r_chen@nudt.edu.cn).

  • 中图分类号: O341

Parametric Analysis and Parameter Inversion of the Crystal Plasticity Constitutive Model for as-Cast TiZrNbV Refractory High Entropy Alloys

Funds: 

The National Science Foundation of China(12072369;12072368)

  • 摘要: 难熔高熵合金因其卓越的力学性能而备受关注,但其细观特征行为对其宏观力学行为的影响尚未被充分理解.随着对材料细观力学行为研究需求的增加,晶体塑性有限元方法已成为揭示晶体材料细观机制的关键工具.由于晶体塑性本构模型包含众多复杂参数,深入分析这些参数对于理解合金的细观力学行为至关重要.研究中采用的晶体塑性本构模型考虑了Peierls应力,这一因素能够反映材料的短程势垒,从而更准确地模拟材料的应变率行为.通过试验设计和极差分析,识别了影响合金力学性能的关键本构参数.单因素分析明确了关键参数对材料力学特性的具体影响.在参数反演方面,提出了一种基于优化设计的参数反演方法,该方法结合支持向量回归法和优化算法,能够有效地从宏观力学测试数据中反演出晶体塑性本构参数.针对铸态TiZrNbV合金,成功反演出一组最优参数,仿真与试验的一致性验证了该方法的有效性.研究为难熔高熵合金的力学行为预测、材料设计以及性能优化提供了有力的支撑.
  • [2]MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122: 448-511.
    SENKOV O N, SENKOVA S V, MIRACLE D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J].Materials Science and Engineering:A,2013,565: 51-62.
    [3]SENKOV O N, RAO S, CHAPUT K J, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys[J].Acta Materialia,2018,151: 201-215.
    [4]唐宇, 王睿鑫, 李顺, 等. 高熵合金含能结构材料的潜力与挑战[J]. 含能材料, 2021,29(10): 1008-1018.(TANG Yu, WANG Ruixin, LI Shun, et al. Potential and challenges of high-entropy alloy energetic structural materials[J].Chinese Journal of Energetic Materials,2021,29(10): 1008-1018. (in Chinese))
    [5]梁秀兵, 万义兴, 莫金勇, 等. 新型高温高熵合金材料研究进展[J]. 科技导报, 2021,39(11): 96-108.(LIANG Xiubing, WAN Yixing, MO Jinyong, et al. Research progress in novel high-temperature high entropy alloys[J].Science & Technology Review,2021,39(11): 96-108. (in Chinese))
    [6]SENKOV O N, WOODWARD C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy[J].Materials Science and Engineering:A,2011,529: 311-320.
    [7]MENG J, SHEN B, WANG J, et al. Energy-release behavior of TiZrNbV high-entropy alloy[J].Intermetallics,2023,162: 108036.
    [8]MENG J Y, HE J Z, ZHANG B, et al. The effect of Ti and Zr content on the structure, mechanics and energy-release characteristics of Ti-Zr-Ta alloys[J].Defence Technology,2024,31: 343-350.
    [9]XIE Q, ZHU Z, KANG G, et al. Crystal plasticity-based impact dynamic constitutive model of magnesium alloy[J].International Journal of Mechanical Sciences,2016,119: 107-113.
    [10]LU Y, ZHU Z, LI D, et al. Constitutive model of 42CrMo steel under a wide range of strain rates based on crystal plasticity theory[J].Materials Science and Engineering:A,2017,679: 215-222.
    [11]BOBBILI R, MADHU V. Constitutive modeling of dynamic flow behavior of Ti-5553 alloy[J].Journal of Alloys and Compounds,2019,787: 260-266.
    [12]RAABE D, SACHTLEBER M, ZHAO Z, et al. Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation[J].Acta Materialia,2001,49(17): 3433-3441.
    [13]BERTIN M, DU C, HOEFNAGELS J P M, et al. Crystal plasticity parameter identification with 3D measurements and integrated digital image correlation[J].Acta Materialia,2016,116: 321-331.
    [14]GALLARDO-BASILE F J, ROTERS F, JENTNER R M, et al. Application of a nanoindentation-based approach for parameter identification to a crystal plasticity model for bcc metals[J].Materials Science and Engineering:A,2023,881: 145373.
    [15]CHAKRABORTY A, EISENLOHR P. Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations[J].European Journal of Mechanics-A/Solids,2017,66: 114-124.
    [16]HERRERA-SOLAZ V, LLORCA J, DOGAN E, et al. An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: application to AZ31 Mg alloy[J].International Journal of Plasticity,2014,57: 1-15.
    [17]JI H S, SONG Q H, GUPTA M K, et al. Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review[J].Journal of Advanced Manufacturing Science and Technology,2021,1(2): 2021005.
    [18]SEDIGHIANI K, DIEHL M, TRAKA K, et al. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves[J].International Journal of Plasticity,2020,134: 102779.
    [19]SUN X C, WANG H M. A method for crystal plasticity model parameter calibration based on Bayesian optimization[M]//Magnesium Technology 〖STBX〗2022. Cham: Springer International Publishing, 2022: 105-111.
    [20]周瑞, 熊宇凯, 储节磊, 等. 基于机器学习和遗传算法的非局部晶体塑性模型参数识别[J]. 力学学报, 2024,56(3): 751-762.(ZHOU Rui, XIONG Yukai, CHU Jielei, et al. Parameter identification of nonlocal crystal plastic model based on machine learning and genetic algorithm[J].Chinese Journal of Theoretical and Applied Mechanics,2024,56(3): 751-762.(in Chinese))
    [21]XU S, AN X, QIAO X, et al. Multi-output least-squares support vector regression machines[J].Pattern Recognition Letters,2013,34(9): 1078-1084.
    [22]王兰, 董宜平, 曹进德. 基于准ARX模型和SVR算法的非线性系统切换控制[J]. 应用数学和力学, 2022,43(11): 1281-1287.(WANG Lan, DONG Yiping, CAO Jinde. Switching control of nonlinear systems based on the quasi-ARX model and the SVR algorithm[J].Applied Mathematics and Mechanics,2022,43(11): 1281-1287. (in Chinese))
    [23]章海明, 徐帅, 李倩, 等. 晶体塑性理论及模拟研究进展[J]. 塑性工程学报, 2020,27(5): 12-32.(ZHANG Haiming, XU Shuai, LI Qian, et al. Progress of crystal plasticity theory and simulations[J].Journal of Plasticity Engineering,2020,27(5): 12-32. (in Chinese))
    [24]HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J].Journal of the Mechanics and Physics of Solids,1972,20(6): 401-413.
    [25]REN K, LIU H, CHEN R, et al. Compression properties and impact energy release characteristics of TiZrNbV high-entropy alloy[J].Materials Science and Engineering:A,2021,827: 142074.
    [26]WANG J, BAI S, TANG Y, et al. Effect of the valence electron concentration on the yield strength of Ti-Zr-Nb-V high-entropy alloys[J].Journal of Alloys and Compounds,2021,868: 159190.
    [27]WEINBERGER C R, BOYCE B L, BATTAILE C C. Slip planes in BCC transition metals[J].International Materials Reviews,2013,58(5): 296-314.
    [28]CARROLL J D, CLARK B G, BUCHHEIT T E, et al. An experimental statistical analysis of stress projection factors in BCC tantalum[J].Materials Science and Engineering:A,2013,581: 108-118.
    [29]HUTCHINSON J W. Bounds and self-consistent estimates for creep of polycrystalline materials[J].Proceedings of the Royal Society A: Mathematical and Physical Sciences,1976,348(1652): 101-127.
    [30]TERENTYEV D, XIAO X, DUBINKO A, et al. Dislocation-mediated strain hardening in tungsten: thermo-mechanical plasticity theory and experimental validation[J].Journal of the Mechanics and Physics of Solids,2015,85: 1-15.
    [31]LIM H, BATTAILE C C, CARROLL J D, et al. A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity[J].Journal of the Mechanics and Physics of Solids,2015,74: 80-96.
    [32]PEIRCE D, ASARO R J, NEEDLEMAN A. An analysis of nonuniform and localized deformation in ductile single crystals[J].Acta Metallurgica,1982,30(6): 1087-1119.
    [33]WU Y C, YAN Y F, LV Z M. Novel prediction model for steel mechanical properties with MSVR based on MIC and complex network clustering[J].Metals,2021,11(5): 747.
    [34]KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J].Multimedia Tools and Applications,2021,80(5): 8091-8126.
    [35]BIGGS M B. Sequential quadratic programming[M]//Nonlinear Optimization With Engineering Applications. Boston, MA: Springer US, 2008: 1-14.
    [36]QUEY R, RENVERSADE L. Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data[J].Computer Methods in Applied Mechanics and Engineering,2018,330: 308-333.
    [37]SPETTL A, WERZ T, KRILL C E, et al. Parametric representation of 3D grain ensembles in polycrystalline microstructures[J].Journal of Statistical Physics,2014,154(4): 913-928.
    [38]王姝予, 宋世杰, 陆晓翀, 等. CrMnFeCoNi高熵合金拉伸断裂的晶体塑性有限元模拟[J]. 机械工程学报, 2021,57(22): 43-51.(WANG Shuyu, SONG Shijie, LU Xiaochong, et al. Tensile fracture behavior of the CrMnFeCoNi high entropy alloy: a crystal plasticity finite element simulation[J].Journal of Mechanical Engineering,2021,57(22): 43-51. (in Chinese))
    [39]HU P, LIU Y, ZHU Y, et al. Crystal plasticity extended models based on thermal mechanism and damage functions: application to multiscale modeling of aluminum alloy tensile behavior[J].International Journal of Plasticity,2016,86: 1-25.
    [40]TIAN L Y, WANG G, HARRIS J S, et al. Alloying effect on the elastic properties of refractory high-entropy alloys[J].Materials & Design,2017,114: 243-252.
    [41]范婉婉, 王涛, 侯洁, 等. 基于CPRVE模型的304不锈钢极薄箔材参数标定[J]. 塑性工程学报, 2019,26(4): 268-273.(FAN Wanwan, WANG Tao, HOU Jie, et al. Parameters calibration of 304 stainless steel ultra-thin foil based on CPRVE model[J].Journal of Plasticity Engineering,2019,26(4): 268-273. (in Chinese))
    [42]惠文. 基于CPFEM的TA15钛合金高温塑性变形研究[D]. 合肥: 合肥工业大学, 2013.(HUI Wen. Rsesearch on the plastic deformation of TA15 titanium alloy at high temperature using CPFEM[D]. Hefei: Hefei University of Technology, 2013. (in Chinese))
    [43]XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J].Systems Science & Control Engineering,2020,8(1): 22-34.
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  8
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2025-02-19
  • 网络出版日期:  2025-05-30

目录

    /

    返回文章
    返回