留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合动态仿真与智能识别的高压涡轮热腐蚀故障预警播报研究

许喆 陈彦木 赵海心 陈旭东 鲁业明

许喆, 陈彦木, 赵海心, 陈旭东, 鲁业明. 融合动态仿真与智能识别的高压涡轮热腐蚀故障预警播报研究[J]. 应用数学和力学, 2025, 46(8): 999-1015. doi: 10.21656/1000-0887.450270
引用本文: 许喆, 陈彦木, 赵海心, 陈旭东, 鲁业明. 融合动态仿真与智能识别的高压涡轮热腐蚀故障预警播报研究[J]. 应用数学和力学, 2025, 46(8): 999-1015. doi: 10.21656/1000-0887.450270
XU Zhe, CHEN Yanmu, ZHAO Haixin, CHEN Xudong, LU Yeming. Research on the Early Warning and Broadcast of High-Pressure Turbine Thermal Corrosion Faults by Integrating Dynamic Simulation and Intelligent Identification[J]. Applied Mathematics and Mechanics, 2025, 46(8): 999-1015. doi: 10.21656/1000-0887.450270
Citation: XU Zhe, CHEN Yanmu, ZHAO Haixin, CHEN Xudong, LU Yeming. Research on the Early Warning and Broadcast of High-Pressure Turbine Thermal Corrosion Faults by Integrating Dynamic Simulation and Intelligent Identification[J]. Applied Mathematics and Mechanics, 2025, 46(8): 999-1015. doi: 10.21656/1000-0887.450270

融合动态仿真与智能识别的高压涡轮热腐蚀故障预警播报研究

doi: 10.21656/1000-0887.450270
基金项目: 

国家自然科学基金 52475241

中央高校基本科研业务费 DUT25LAB110

中央高校基本科研业务费 DUT24LK008

辽宁省应用基础研究计划 2023JH2/101600031

详细信息
    作者简介:

    许喆(1994—),男,助理工程师,硕士(E-mail: xuzhe0520@foxmail.com)

    通讯作者:

    鲁业明(1991—),男,副教授,博士(通讯作者. E-mail: luyeming@dlut.edu.cn)

  • 中图分类号: TK47

Research on the Early Warning and Broadcast of High-Pressure Turbine Thermal Corrosion Faults by Integrating Dynamic Simulation and Intelligent Identification

  • 摘要: 燃气轮机是空天和舰船装备的重要动力来源,涡轮作为燃-燃联合动力系统的关键部件,长时间工作在高温高压环境下,严苛的工作环境导致涡轮叶片易于遭受热腐蚀,从而可能引发系统级别的故障.因此,对涡轮进行热腐蚀故障诊断技术研究具有重要的工程意义.针对涡轮热腐蚀问题,提出了一种融合动态仿真和智能诊断算法的涡轮热腐蚀故障识别方法,利用模块化设计思路,在燃机运行机理数字化模型的基础上建立了整机动态仿真模型,通过标准差法检测所提取数据集中的异常值,使用KNN算法填补空缺值后,采用的小波包Bayes降噪使信号和数据更精准,然后根据人工智能算法构建了表征叶片热腐蚀受损的识别模型.最后,通过使用历史健康数据训练人工智能算法,依靠监测预警模型输出的预测值与实际测量值之间的偏差变化,实现了对涡轮热腐蚀故障的预警播报:在120台机组不同部件运行故障定位测试中,该方法故障精准识别率达95%;在24台机组不同数据特征下的高压涡轮热腐蚀故障预警测试中,故障预警准确率达91.7%以上.该研究拟为动力装备的数字化诊断提供技术参考.
  • 图  1  燃气轮机动态仿真模型

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The diagram of a dynamic simulation model for the gas turbine

    图  2  燃-燃联合动力系统动态仿真模型

    Figure  2.  The dynamic simulation model diagram of the combined fuel-fuel power system

    图  3  涡轮热腐蚀故障模块

    Figure  3.  The compressor fouling fault module

    图  4  参数测点分布

    Figure  4.  The parametric measurement point distribution diagram

    图  5  涡轮热腐蚀故障各部件影响情况

    Figure  5.  Reactions of various components of the compressor fouling failure system

    图  6  数据治理流程

    Figure  6.  The data governance flowchart

    图  7  不确定性量化对比图

    Figure  7.  Uncertainty quantification comparison charts

    图  8  涡轮热腐蚀预警模型

    Figure  8.  Schematic diagram of the early warning model for fouling in compressor blades

    图  9  涡轮热腐蚀故障发生时故障识别模型对于各部件的响应

    Figure  9.  The responses of the fault identification model to each component during a compressor fouling fault

    图  10  涡轮热腐蚀故障发生时部分故障识别模型对于各部件的响应

    Figure  10.  The response of the fault identification model to each component when a compressor fouling fault occur

    表  1  仿真平台参数验证表[15]

    Table  1.   The simulation platform parameter verification table[15]

    parameter simulation value contrasting value deviation/%
    environmental temperature/K 288 288 0
    environmental stress/kPa 101.325 101.325 0
    power turbine speed/(r/min) 3 599 3 600 0.02
    power turbine inlet temperature/K 1 034 1 041 0.7
    power turbo expansion ratio 3.96 3.85 2.8
    high-pressure turbine expansion ratio 4.59 4.54 1.1
    下载: 导出CSV

    表  2  动力系统各部件的报警准确度

    Table  2.   Alarm accuracy of each component of the power system

    model type number of units number of false positives number of false negatives accuracy/%
    compressor model 24 0 0 100
    combustion chamber model 24 1 0 95.8
    high-pressure turbo model 24 2 0 91.7
    power turbine model 24 1 1 91.7
    gearbox model 24 0 0 100
    propeller model 24 0 1 95.8
    下载: 导出CSV
  • [1] 赵德孜. 海洋环境下燃气轮机涡轮叶片的热腐蚀与防护[J]. 装备环境工程, 2011, 8(5): 100-103.

    ZHAO Dezi. Hot corrosion and protection of gas turbine blade in marine environment[J]. Equipment Environmental Engineering, 2011, 8(5): 100-103. (in Chinese)
    [2] SEYBOLT A U, BELTRAN A. Hot corrosion problems associated with gas turbines[C]//American Society for Testing and Materials STP. 1967.
    [3] SALEHNASAB B, POURSAEIDI E, MORTAZAVI S A, et al. Hot corrosion failure in the first stage nozzle of a gas turbine engine[J]. Engineering Failure Analysis, 2016, 60: 316-325. doi: 10.1016/j.engfailanal.2015.11.057
    [4] TARADA F, SUZUKI M. External heat transfer enhancement to turbine blading due to surface roughness[C]//ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. 1993.
    [5] BONS J P, TAYLOR R P, MCCLAIN S T, et al. The many faces of turbine surface roughness[J]. Journal of Turbomachinery, 2001, 123(4): 739-748. doi: 10.1115/1.1400115
    [6] GARG S. Controls and health management technologies for intelligent aerospace propulsion systems[C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, 2004: 949.
    [7] 贺惠新. 燃机异常检测系统的关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    HE Huixin. Esearch on the key problems of anomaly detection system of gas turbine[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
    [8] BOTROS K K, KIBRYA G, GLOVER A. A demonstration of artificial neural-networks-based data mining for gas-turbine-driven compressor stations[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(2): 284-297. doi: 10.1115/1.1414130
    [9] TAN H S. Fourier neural networks and generalized single hidden layer networks in aircraft engine fault diagnostics[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(4): 773-782. doi: 10.1115/1.2179465
    [10] VERMA R, ROY N, GANGULI R. Gas turbine diagnostics using a soft computing approach[J]. Applied Mathematics and Computation, 2006, 172(2): 1342-1363.
    [11] KANG Y S, YOO J C, KANG S H. Numerical predictions of roughness effects on the performance degradation of an axial-turbine stage[J]. Journal of Mechanical Science and Technology, 2006, 20(7): 1077-1088.
    [12] SUBRAMANIAN A, GAMANNOSSI A, MAZZEI L, et al. Numerical investigation of surface roughness effects on heat transfer in a turbine cascade[C]//Second International Conference on Material Science, Smart Structures and Applications: ICMSS-2019. 2019: 2191.
    [13] SHUKLA A, HARSHA S P. An experimental and FEM modal analysis of cracked and normal steam turbine blade[J]. Materials Today: Proceedings, 2015, 2(4/5): 2056-2063.
    [14] DE BONA F, LANZUTTI A, LUCACCI G, et al. Turbine blade distortion after heat treatment: preliminary experimental investigation and FEM analysis[J]. Key Engineering Materials, 2019, 827: 98-103.
    [15] 李淑英. 船舶动力装置仿真技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2013.

    LI Shuying. Simulation Technology of Ship Power Plant[M]. Harbin: Harbin Engineering University Press, 2013. (in Chinese)
    [16] 林新智. 双轴燃气轮机性能仿真及故障特征研究[D]. 北京: 北京化工大学, 2021.

    LIN Xinzhi. Research on performance simulation and fault characteristics of dual shaft gas turbine[D]. Beijing: Beijing University of Chemical Technology, 2021. (in Chinese)
    [17] 胡杨. 涡轮叶片温度特征提取及其故障判别研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.

    HU Yang. Research of turbine blades temperature feature extraction and fault discriminant[D]. Harbin: Harbin Engineering University, 2015. (in Chinese)
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-06-22
  • 刊出日期:  2025-08-01

目录

    /

    返回文章
    返回