• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

修正Timoshenko梁系统的归一化与对偶关系

蔡汶秀 郑罡 唐宇 孙测世 叶念雨 薛文琪

蔡汶秀, 郑罡, 唐宇, 孙测世, 叶念雨, 薛文琪. 修正Timoshenko梁系统的归一化与对偶关系[J]. 应用数学和力学, 2025, 46(12): 1540-1549. doi: 10.21656/1000-0887.450292
引用本文: 蔡汶秀, 郑罡, 唐宇, 孙测世, 叶念雨, 薛文琪. 修正Timoshenko梁系统的归一化与对偶关系[J]. 应用数学和力学, 2025, 46(12): 1540-1549. doi: 10.21656/1000-0887.450292
CAI Wenxiu, ZHENG Gang, TANG Yu, SUN Ceshi, YE Nianyu, XUE Wenqi. Normalization and Duality Relations of Modified Timoshenko Beams[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1540-1549. doi: 10.21656/1000-0887.450292
Citation: CAI Wenxiu, ZHENG Gang, TANG Yu, SUN Ceshi, YE Nianyu, XUE Wenqi. Normalization and Duality Relations of Modified Timoshenko Beams[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1540-1549. doi: 10.21656/1000-0887.450292

修正Timoshenko梁系统的归一化与对偶关系

doi: 10.21656/1000-0887.450292
基金项目: 

国家自然科学基金 52378284

详细信息
    作者简介:

    蔡汶秀(1997—),女,博士生

    郑罡(1972—),男,研究员,博士,博士生导师(E-mail: zhenggang@cqjtu.edu.cn)

  • 中图分类号: Q342

Normalization and Duality Relations of Modified Timoshenko Beams

  • 摘要: 为研究修正Timoshenko梁系统的对偶条件和分类,讨论其理论意义. 首先通过引入时间和空间缩放变换,实现了对修正Timoshenko梁动力学方程的标准化;其次,基于该归一化方程,论证了在任意相同边界条件下参数型对偶关系的存在性;然后,探讨了不同截面类型参数型对偶关系的特点;最后,在固支-铰支、固支-固支和固支-自由这三种边界条件下,求解标准化方程,提出了构造对偶梁的方法,并通过文献算例展示了修正Timoshenko梁参数型对偶性的特征. 结果表明:归一化算法求解修正Timoshenko对偶梁的频率完全相同,且基于该算法可论证其修正Timoshenko梁的参数型对偶条件. 动力学特性的参数型对偶关系为修正Timoshenko梁的一种本质属性,时空缩放变换为揭示该特性的有效方法.
  • 图  1  Timoshenko梁典型单元

    Figure  1.  A typical element of the Timoshenko beams

    图  2  在不同的边界条件下无量纲频率-梁长(ω-l)曲线

    Figure  2.  Dimensionless frequency-length (ω-l) curves in different boundary conditions

    图  3  修正Timoshenko梁的归一化算法流程图

    Figure  3.  The flow chart of the normalization algorithm for the modified Timoshenko beam

    图  4  修正Timoshenko对偶梁的构造流程图

    Figure  4.  Construction flowchart of the modified Timoshenko dual beam

    表  1  不同边界条件下修正Timoshenko梁的频率方程

    Table  1.   Frequency equations of the modified Timoshenko beam under different boundary conditions

    boundary condition end condition frequency equation
    clamped-hinged φ(0)=0 $\left(\lambda_2-\frac{N \omega^2}{\lambda_2}\right) \tanh \left(\lambda_1 l\right)-\left(\lambda_1+\frac{N \omega^2}{\lambda_1}\right) \tan \left(\lambda_2 l\right)=0$
    θ(0)=0
    φ(l)=0
    θ′(l)=0
    clamped-clamped φ(0)=0 $2-2 \cosh \left(\lambda_1 l\right) \cos \left(\lambda_2 l\right)+\left(\frac{\lambda_1+\frac{N \omega^2}{\lambda_1}}{\lambda_2-\frac{N \omega^2}{\lambda_2}}-\frac{\lambda_2-\frac{N \omega^2}{\lambda_2}}{\lambda_1+\frac{N \omega^2}{\lambda_1}}\right) \sinh \left(\lambda_1 l\right) \sin \left(\lambda_2 l\right)=0$
    θ(0)=0
    φ(l)=0
    θ(l)=0
    clamped-free φ(0)=0 $2+\left(\frac{\lambda_1}{\lambda_2}-\frac{\lambda_2}{\lambda_1}\right) \sin \left(\lambda_2 l\right) \sinh \left(\lambda_1 l\right)+\left(\frac{\lambda_1}{\lambda_2} \frac{\lambda_1+\frac{N \omega^2}{\lambda_1}}{\lambda_2-\frac{N \omega^2}{\lambda_2}}+\frac{\lambda_2}{\lambda_1} \frac{\lambda_2-\frac{N \omega^2}{\lambda_2}}{\lambda_1+\frac{N \omega^2}{\lambda_1}}\right) \cos \left(\lambda_2 l\right) \cosh \left(\lambda_1 l\right)=0$
    θ(0)=0
    φ′(l)-θ(l)=0
    θ′(l)=0
    下载: 导出CSV

    表  2  修正Timoshenko梁的基本物理参数

    Table  2.   The basic parameters of the modified Timoshenko beams

    numerical example beam dimension (length,width,height)/m density/(kg/m3) elastic modulus/GPa shear modulus/GPa Poisson’s ratio shear coefficient
    ref. [11] 2×0.1×0.1 8 000 260 100 0.3 5/6
    ref. [11] 2×0.1×0.1 8 000 260 100 0.3 5/6
    ref. [12] 0.8×0.1×0.1 8 000 260 100 0.3 5/6
    下载: 导出CSV

    表  3  不同边界条件下的修正Timoshenko梁频率

    Table  3.   Frequencies of modified Timoshenko beams under different boundary conditions

    boundary condition i $\widetilde{\omega}_{\mathrm{n}}$/(rad/s) $\widetilde{\omega}_{\mathrm{r}}$[11]/(rad/s) e/%
    clamped-hinged 1 631.232 630.412 0.13
    2 2 018.847 2 014.308 0.23
    3 4 125.726 4 112.848 0.31
    4 6 864.657 6 838.452 0.38
    5 10 135.553 10 091.089 0.44
    6 13 837.133 13 769.815 0.49
    7 17 875.455 17 782.256 0.52
    8 22 168.834 22 047.127 0.55
    9 26 649.650 26 498.326 0.57
    10 31 264.002 31 082.446 0.58
    clamped-clamped 1 915.671 912.938 0.30
    2 2 488.636 2 476.375 0.50
    3 4 775.607 4 744.422 0.66
    4 7 676.644 7 615.902 0.80
    5 11 090.608 10 990.008 0.92
    6 14 916.089 14 767.862 1.00
    7 19 060.313 18 857.965 1.07
    8 23 443.475 23 183.168 1.12
    9 28 000.130 27 679.656 1.16
    10 32 678.554 32 297.026 1.18
    clamped-free 1 893.027 6 892.977 0.01
    2 5 227.950 2 5 228.583 -0.01
    3 13 349.451 4 13 361.775 -0.09
    4 23 453.124 4 23 521.191 -0.29
    5 34 658.126 3 34 843.732 -0.53
    6 46 382.805 5 46 733.804 -0.75
    7 58 312.566 9 58 848.124 -0.91
    8 70 281.369 7 71 003.211 -1.02
    9 82 211.315 8 83 112.545 -1.08
    10 94 070.323 5 95 140.946 -1.13
    下载: 导出CSV

    表  4  对偶梁基本物理参数

    Table  4.   Basic physical parameters of the dual beams

    beam beam dimension/m elastic modulus/GPa density/(kg/m3) shear coefficient Poisson’s ratio shear modulus/GPa
    ref. [11] $\begin{gathered}\tilde{l} \times \tilde{b} \times \tilde{h}= 2 \times 0.1 \times 0.1\end{gathered}$ 260 8 000 5/6 0.3 100
    beam #1 $\begin{gathered}\tilde{l} \times \tilde{b} \times \tilde{h}= 2 \times 0.3 \times 0.1\end{gathered}$ 208 6 400 5/6 0.3 80
    beam #2 $\begin{aligned} & \tilde{l}=1.998 ; \\ & \widetilde{D}=0.119\end{aligned}$ 245.029 8 000 9/10 0.3 94.242
    下载: 导出CSV

    表  5  不同对偶梁的频率

    Table  5.   The dual beam frequency comparison

    beam boundary condition i ω/(rad/s) αt αx $\widetilde{\omega}$/(rad/s)
    ref. [11] clamped-hinged 1 1.317E-2 2.086E-5 5.859E-2 631.232
    2 4.212E-2 2 018.847
    3 8.607E-2 4 125.726
    4 1.432E-1 6 864.657
    beam #1 clamped-hinged 1 1.317E-2 2.086E-5 5.859E-2 631.232
    2 4.212E-2 2 018.847
    3 8.607E-2 4 125.726
    4 1.432E-1 6 864.657
    beam #2 clamped-hinged 1 1.317E-2 2.086E-5 5.854E-5 631.232
    2 4.212E-2 2 018.847
    3 8.607E-2 4 125.726
    4 1.432E-1 6 864.657
    下载: 导出CSV
  • [1] 周博, 郑雪瑶, 康泽天, 等. 基于修正偶应力理论的Timoshenko微梁模型和尺寸效应研究[J]. 应用数学和力学, 2019, 40(12): 1321-1334. doi: 10.21656/1000-0887.400056

    ZHOU Bo, ZHENG Xueyao, KANG Zetian, et al. A Timoshenko micro-beam model and its size effects based on the modified couple stress theory[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1321-1334. (in Chinese) doi: 10.21656/1000-0887.400056
    [2] 关玉铭, 戈新生. 基于非约束模态的中心刚体-Timoshenko梁动力学建模与分析[J]. 应用数学和力学, 2022, 43(2): 156-165. doi: 10.21656/1000-0887.420089

    GUAN Yuming, GE Xinsheng. Dynamic modeling and analysis of the central rigid body-Timoshenko beam model based on unconstrained modes[J]. Applied Mathematics and Mechanics, 2022, 43(2): 156-165. (in Chinese) doi: 10.21656/1000-0887.420089
    [3] LOVE A E. A Treatise on the Mathematical Theory of Elasticity[M]. New York: Dover, 1927: 314-331.
    [4] TRAILL-NASH R W, COLLAR A R. The effects of shear flexibility and rotatory inertia on the bending vibrations of beams[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1953, 6(2): 186-222. doi: 10.1093/qjmam/6.2.186
    [5] LUBLINER E, ELISHAKOFF I. Random vibration of system with finitely many degrees of freedom and several coalescent natural frequencies[J]. International Journal of Engineering Science, 1986, 24(4): 461-470. doi: 10.1016/0020-7225(86)90038-8
    [6] ELISHAKOFF I. Handbook on Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories[M]. New York: Isaac Elishakoff, 2019: 107-138.
    [7] 余云燕, 孔嘉乐, 陈进浩, 等. 变截面修正Timoshenko梁自振频率的回传射线矩阵法分析[J]. 地震工程学报, 2022, 44(4): 751-758.

    YU Yunyan, KONG Jiale, CHEN Jinhao, et al. Natural frequency of a modified Timoshenko beam with variable cross-section with the method of reverberation ray matrix[J]. China Earthquake Engineering Journal, 2022, 44(4): 751-758. (in Chinese)
    [8] LI M L, WEI P J, ZHOU X L. Wave propagation and free vibration of a Timoshenko beam mounted on the viscoelastic Pasternak foundation modeled by fraction-order derivatives[J]. Mechanics of Time-Dependent Materials, 2023, 27(4): 1209-1223. doi: 10.1007/s11043-022-09541-4
    [9] 吴晓, 罗佑新. 用Timoshenko梁修正理论研究功能梯度材料梁的动力响应[J]. 振动与冲击, 2011, 30(10): 245-248.

    WU Xiao, LUO Youxin. Dynamic responses of a beam with functionally graded materials with Timoshenko beam correction theory[J]. Journal of Vibration and Shock, 2011, 30(10): 245-248. (in Chinese)
    [10] FALSONE G, SETTINERI D, ELISHAKOFF I. A new class of interdependent shape polynomials for the FE dynamic analysis of Mindlin plate Timoshenko beam[J]. Meccanica, 2015, 50(3): 767-780. doi: 10.1007/s11012-014-0032-9
    [11] ELISHAKOFF I, TONZANI G M, MARZANI A. Effect of boundary conditions in three alternative models of Timoshenko-Ehrenfest beams on Winkler elastic foundation[J]. Acta Mechanica, 2018, 229(4): 1649-1686. doi: 10.1007/s00707-017-2034-x
    [12] ELISHAKOFF I, TONZANI G M, MARZANI A. Three alternative versions of Bresse-Timoshenko theory for beam on pure Pasternak foundation[J]. International Journal of Mechanical Sciences, 2018, 149: 402-412. doi: 10.1016/j.ijmecsci.2017.10.043
    [13] KARNOPP B H. Duality relations in the analysis of beam oscillations[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1967, 18(4): 575-580.
    [14] CHEN Q, ZHU D. Vibrational analysis theory and application to elastic-viscoelastic composite structures[J]. Computers & Structures, 1990, 37(4): 585-595.
    [15] RAM Y M, ELHAY S. Dualities in vibrating rods and beams: continuous and discrete models[J]. Journal of Sound and Vibration, 1995, 184(5): 759-766. doi: 10.1006/jsvi.1995.0345
    [16] LI X, XU F, ZHANG Z. Symplectic method for natural modes of beams resting on elastic foundations[J]. Journal of Engineering Mechanics, 2018, 144(4): 04018009. doi: 10.1061/(ASCE)EM.1943-7889.0001427
    [17] 胡海岩. 梁在固有振动中的对偶关系[J]. 力学学报, 2020, 52(1): 139-149.

    HU Haiyan. Duality relations of beams in natural vibrations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 139-149. (in Chinese)
    [18] ELISHAKOFF I, AMATO M. Flutter of a beam in supersonic flow: truncated version of Timoshenko-Ehrenfest equation is sufficient[J]. International Journal of Mechanics and Materials in Design, 2021, 17(4): 783-799. doi: 10.1007/s10999-021-09537-x
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  33
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2025-11-17
  • 刊出日期:  2025-12-01

目录

    /

    返回文章
    返回