The Theory and Parameter Identification for the Graphite Block Collision Model
-
摘要: 石墨堆芯作为气冷反应堆的核心构件,在地震载荷作用下可能因构件间隙引发碰撞,直接影响反应堆安全,研究其碰撞动力学特性对核工程安全评估具有重要意义. 核设备的抗震分析常对整体系统进行简化后(如模态叠加法)开展高效动力学计算,因此寻找线性化的堆芯碰撞行为分析模型非常必要. 首先,基于石墨块的碰撞行为开展了经典的L-N碰撞模型和Kelvin碰撞模型,并开展了线性简化模型的建模理论分析;然后,探讨了模型参数对其碰撞行为的影响规律,进而提出了一种碰撞模型参数的迭代识别算法;最后,搭建了一套石墨块的碰撞试验系统,采集了不同初速度下的碰撞响应并对碰撞特征量进行了统计分析,实现了碰撞模型的参数识别和线性等效模型的有效性验证. 研究工作可为含石墨堆芯等碰撞构件的核设备抗震分析模型提供重要参考依据.Abstract: The graphite core, as the crucial component of a gas-cooled reactor, may trigger collision due to the gap between components under seismic loads, to affect the safety of the reactor. Studying its collision dynamic characteristics is of great significance for the safety assessment of nuclear engineering. For seismic analysis of nuclear equipment, the whole system is often simplified (such as the modal superposition method) to carry out efficient dynamic calculations, so it is necessary to find a linearized core collision behavior analysis model. The classical L-N collision modeling, the Kelvin collision modeling, and the modeling theory analysis of the linear simplified model were carried out based on the collision behaviors of graphite blocks. Then, the effects of model parameters on its collision behaviors were discussed, and an iterative recognition algorithm for model parameters was proposed. Finally, a dedicated collision test system for graphite blocks was established. The collision responses under various initial velocities were measured, to enable the statistical analysis of collision characteristics, the parameter identification for the collision model, and the validation of the linear equivalent model. This study can provide an important reference for the seismic analysis model for nuclear equipment containing graphite cores and other collision components.
-
Key words:
- graphite core /
- clearance /
- collision model /
- parameter identification /
- collision experiment
-
表 1 不同冲锤高度时石墨块碰撞试验结果
Table 1. Experimental results of graphite block collisions at different hammer heights
hammer height/cm initial velocity(m/s) collision time length/ms recovery coefficient mean standard deviation mean standard deviation mean standard deviation 0.2 0.380 0.044 0.264 0.030 0.758 0.081 2.0 0.894 0.105 0.209 0.044 0.745 0.109 4.0 1.344 0.080 0.194 0.028 0.771 0.101 6.0 1.695 0.103 0.180 0.025 0.781 0.103 -
[1] 赖士刚, 史力, 王晓欣, 等. 石墨堆芯结构在地震激励下动态响应的数值模拟[J]. 原子能科学技术, 2016, 50(11): 2041-2047.LAI Shigang, SHI Li, WANG Xiaoxin, et al. Numerical analysis for HTR-PM graphite core structure dynamic response under seismic load[J]. Atomic Energy Science and Technology, 2016, 50(11): 2041-2047. (in Chinese) [2] 赖士刚, 孙立斌, 张征明. 石墨堆芯结构抗震研究[J]. 核技术, 2013, 36(4): 20-28.LAI Shigang, SUN Libin, ZHANG Zhengming. Seismic research on graphite reactor core[J]. Nuclear Techniques, 2013, 36(4): 20-28. (in Chinese) [3] 孙立斌, 史力, 王洪涛, 等. 高温气冷堆石墨堆芯结构双层模型抗震研究[J]. 原子能科学技术. 2012, 46(S1): 839-844.SUN Libin, SHI Li, WANG Hongtao, et al. Seismic study on double-layer model of HTR graphite core structure[J]. Atomic Energy Science and Technology, 2012, 46(S1): 839-844. (in Chinese) [4] IKUSHIMA T, HONMA T, ISHIZUKA H. Seismic research on block-type HTGR core[J]. Nuclear Engineering and Design, 198, 71(2): 195-215. [5] MUTHUKUMAR S, DESROCHES R. A Hertz contact model with non-linear damping for pounding simulation[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(7): 811-828. [6] FARROKHNIA A, JIVKOV A P, HALL G, et al. Large-scale modeling of damage and failure of nuclear graphite moderated reactor[J]. Journal of Pressure Vessel Technology, 2022, 144(3): 031502. doi: 10.1115/1.4053478 [7] JIN L E, WANG H T, SUN L B, et al. Experimental and numerical researches on collision of graphite bricks[J]. Nuclear Engineering and Design, 2014, 275: 179-189. doi: 10.1016/j.nucengdes.2014.05.005 [8] 田清, 孙立斌, 王海涛, 等. HTR石墨砖单柱模型抗震试验与分析. 核动力工程. 2012, 33(2): 42-46.TIAN Qing, SUN Libin, WANG Haitao, et al. Seismic tests and analysis of HTR graphite single column model[J]. Nuclear Power Engineering. 2012, 33(2): 42-46. (in Chinese) [9] 赖士刚, 孙立斌, 史力, 等. HTR-PM侧反射层结构相似模型抗震试验与分析[J]. 原子能科学技术. 2016, 50(4): 691-697.LAI Shigang, SUN Libin, SHI Li, et al. Seismic test and analysis on HTR-PM side-reflector structure similarity model[J]. Atomic Energy Science and Technology, 2016, 50(4): 691-697. (in Chinese) [10] 汪嘉春, 吴鸿麟, 董铎. 200 MW供热堆堆芯结构抗震试验模型设计的若干问题[J]. 清华大学学报(自然科学版), 1995, 35(6): 64-69.WANG Jiachun, WU Honglin, DONG Duo. Some problems of aseismic test model design of NHR-200 core structure[J]. Journal of Tsinghua University (Science and Technology), 1995, 35(6): 64-69. (in Chinese) [11] 魏超, 李铁萍, 郭超, 等. 堆芯燃料组件抗震分析简化模型研究[J]. 核电子学与探测技术, 2017, 37(2): 182-185.WEI Chao, LI Tieping, GUO Chao, et al. Study on seismic analysis of the simplified model of fuel assembly[J]. Nuclear Electronics & Detection Technology, 2017, 37(2): 182-185. (in Chinese) [12] 岳欠杯, 刘巨保, 罗敏, 等. 圆筒流体域内管束振动与碰撞接触的流固耦合动力学方法研究[J]. 应用数学和力学, 2018, 39(5): 568-583. doi: 10.21656/1000-0887.380265YUE Qianbei, LIU Jubao, LUO Min, et al. A method of fluid-solid coupling dynamics for tube bundle vibration and collision in a cylinder fluid domain[J]. Applied Mathematics and Mechanics, 2018, 39(5): 568-583. (in Chinese) doi: 10.21656/1000-0887.380265 [13] CAI M, ZHU L, HUANG C, et al. A preliminary study on seismic behavior of the graphite reflector in molten salt reactor[J]. Nuclear Engineering and Design, 2018, 330: 282-288. doi: 10.1016/j.nucengdes.2018.02.010 [14] SUMITA J, SHIBATA T, IYOKU T, et al. Principle design of graphite components for HTTR and R&D on nuclear graphite for HTGR in JAEA[J]. Key Engineering Materials, 2016, 697: 797-806. doi: 10.4028/www.scientific.net/KEM.697.797 [15] VOYAGAKI E, KLOUKINAS P, DIETZ M, et al. Earthquake response of a multiblock nuclear reactor graphite core: experimental model vs simulations[J]. Earthquake Engineering and Structural Dynamics, 2018, 47: 2601-2626. doi: 10.1002/eqe.3100 [16] KIM G, KIM D O, CHOI W S, et al. Dynamics simulations of a graphite block under longitudinal impact[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(5): 052901. doi: 10.1115/1.4002352 [17] 鲍四元. 弹性碰撞问题的模态叠加法及哈密顿体系下的计算研究[D]. 西安: 西北工业大学, 2005.BAO Siyuan. Mode superposition method in elastic impact problem and numerical study in Hamiltonian system of related problems[D]. Xi'an: Northwestern Polytechnical University, 2005. (in Chinese) [18] 韩石磊, 洪嘉振. 柔性多体碰撞问题的多变量方法[J]. 力学学报, 2011, 43(5): 886-893.HAN Shilei, HONG Jiazhen. Multi-variable method for flexible multi-body systems with contact/impact[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 886-893. (in Chinese) [19] 富立, 胡鸿奎, 富腾. 多体系统接触碰撞问题的牛顿-欧拉线性互补方法[J]. 力学学报. 2017, 49(5): 1115-1125.FU Li, HU Hongkui, FU Teng. Contact-impact analysis in multi-body systems based on Newton-Euler LCP approach[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1115-1125. (in Chinese) [20] 焦晓娟, 马建敏. 连接阻尼对弹性杆纵向碰撞响应的影响[J]. 应用数学和力学. 2015, 36(4): 393-403. doi: 10.3879/j.issn.1000-0887.2015.04.007JIAO Xiaojuan, MA Jianmin. Effects of boundary damping on the elastic rod's response to longitudinal impact[J]. Applied Mathematics and Mechanics, 2015, 36(4): 393-403. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.04.007 [21] 马易志. 柔性多体系统接触碰撞的理论和实验研究[D]. 上海: 上海交通大学, 2008.MA Yizhi. Dynamic modeling ptheory and experiment investigation for flexible multi-body system with contact-impact[D]. Shanghai: Shanghai Jiao Tong University, 2008. (in Chinese) [22] 白争锋, 赵阳, 田浩. 柔性多体系统碰撞动力学研究[J]. 振动与冲击, 2009, 28(6): 75-78.BAI Zhengfeng, ZHAO Yang, TIAN Hao. Study on collision dynamics of flexible multi-body system[J]. Journal of Vibration and Shock, 2009, 28(6): 75-78. (in Chinese) [23] WANG G, LIU C. Further investigation on improved viscoelastic contact force model extended based on Hertz's law in multibody system[J]. Mechanism and Machine Theory, 2020, 153: 103986. doi: 10.1016/j.mechmachtheory.2020.103986 -
下载:
渝公网安备50010802005915号