[1] |
POLYAK B T. Some methods of speeding up the convergence of iteration methods[J]. USSR Computational Mathematics and Mathematical Physics, 1964, 4(5): 1-17. doi: 10.1016/0041-5553(64)90137-5
|
[2] |
SU W, BOYD S, CANDÈS E J. A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[J]. Journal of Machine Learning Research, 2016, 17(153): 1-43.
|
[3] |
ATTOUCH H, CHBANI Z, PEYPOUQUET J, et al. Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[J]. Mathematical Programming, 2018, 168(1): 123-175.
|
[4] |
XU B, WEN B. On the convergence of a class of inertial dynamical systems with Tikhonov regularization[J]. Optimization Letters, 2021, 15(6): 2025-2052. doi: 10.1007/s11590-020-01663-3
|
[5] |
SHI B, DU S S, JORDAN M I, et al. Understanding the acceleration phenomenon via high-resolution differential equations[J]. Mathematical Programming, 2022, 195(1): 79-148.
|
[6] |
LUO H, CHEN L. From differential equation solvers to accelerated first-order methods for convex optimization[J]. Mathematical Programming, 2022, 195(1): 735-781.
|
[7] |
ATTOUCH H, BOŢ R I, CSETNEK E R. Fast optimization via inertial dynamics with closed-loop damping[J]. Journal of the European Mathematical Society, 2023, 25(5): 1985-2056.
|
[8] |
ZENG X, LEI J, CHEN J. Dynamical primal-dual Nesterov accelerated method and its application to network optimization[J]. IEEE Transactions on Automatic Control, 2023, 68(3): 1760-1767. doi: 10.1109/TAC.2022.3152720
|
[9] |
BO R I, NGUYEN D K. Improved convergence rates and trajectory convergence for primal-dual dynamical systems with vanishing damping[J]. Journal of Differential Equations, 2021, 303: 369-406. doi: 10.1016/j.jde.2021.09.021
|
[10] |
HE X, HU R, FANG Y P. "Second-order primal" + "first-order dual" dynamical systems with time scaling for linear equality constrained convex optimization problems[J]. IEEE Transactions on Automatic Control, 2022, 67(8): 4377-4383. doi: 10.1109/TAC.2022.3176527
|
[11] |
HULETT D A, NGUYEN D K. Time rescaling of a primal-dual dynamical system with asymptotically vanishing damping[J]. Applied Mathematics and Optimization, 2023, 88(2): 27. doi: 10.1007/s00245-023-09999-9
|
[12] |
HE X, TIAN F, LI A Q, et al. Convergence rates of mixed primal-dual dynamical systems with Hessian driven damping[J]. Optimization, 2025, 74(2): 365-390. doi: 10.1080/02331934.2023.2253813
|
[13] |
ATTOUCH H, CHBANI Z, FADILI J, et al. Fast convergence of dynamical ADMM via time scaling of damped inertial dynamics[J]. Journal of Optimization Theory and Applications, 2022, 193(1): 704-736.
|
[14] |
HARAUX A. Systèmes Dynamiques Dissipatifs et Applications[M]. Paris: Elsevier Masson, 1991.
|
[15] |
BRÉZIS H. Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert[M]. Amsterdam: North Holland Publishing Company, 1973.
|
[16] |
HE X, HU R, FANG Y P. Inertial primal-dual dynamics with damping and scaling for linearly constrained convex optimization problems[J]. Applicable Analysis, 2023, 102(15): 4114-4139.
|
[17] |
ATTOUCH H, PEYPOUQUET J, REDONT P. Fast convex optimization via inertial dynamics with Hessian driven damping[J]. Journal of Differential Equations, 2016, 261(10): 5734-5783.
|