• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变温和荷载作用下正交异性层合梁弹性力学解

钱海 陈佳伟 陆春华

钱海, 陈佳伟, 陆春华. 变温和荷载作用下正交异性层合梁弹性力学解[J]. 应用数学和力学, 2026, 47(2): 145-157. doi: 10.21656/1000-0887.450323
引用本文: 钱海, 陈佳伟, 陆春华. 变温和荷载作用下正交异性层合梁弹性力学解[J]. 应用数学和力学, 2026, 47(2): 145-157. doi: 10.21656/1000-0887.450323
QIAN Hai, CHEN Jiawei, LU Chunhua. Elastic Solutions for Orthotropic Laminated Beams Under Temperature Variations and Loads[J]. Applied Mathematics and Mechanics, 2026, 47(2): 145-157. doi: 10.21656/1000-0887.450323
Citation: QIAN Hai, CHEN Jiawei, LU Chunhua. Elastic Solutions for Orthotropic Laminated Beams Under Temperature Variations and Loads[J]. Applied Mathematics and Mechanics, 2026, 47(2): 145-157. doi: 10.21656/1000-0887.450323

变温和荷载作用下正交异性层合梁弹性力学解

doi: 10.21656/1000-0887.450323
基金项目: 

国家自然科学基金 52108148

国家自然科学基金 52478177

中国博士后科学基金(面上项目) 2021M701483

江苏省博士后科研资助计划 2021K574C

详细信息
    作者简介:

    钱海(1986—), 男,副教授,博士(E-mail: ganensky@ujs.edu.cn)

    陈佳伟(1998—),男,硕士生(E-mail: 3305404911@qq.com)

    通讯作者:

    陆春华(1979—), 男,教授,博士,博士生导师(通信作者. E-mail: lch79@ujs.edu.cn)

  • 中图分类号: O343.6

Elastic Solutions for Orthotropic Laminated Beams Under Temperature Variations and Loads

  • 摘要: 由多种工程材料组成的复合材料层合结构因其卓越的可设计性和优良的力学性能,在建筑工程、航天航空、汽车工业等领域有着广泛的应用. 该文研究了温度环境中正交各向异性固支层合梁的热力学行为,并基于热弹性理论推导出了热应力和位移的精确解. 该方法适用于荷载和变温环境共同作用下,任意厚度和层数的正交各向异性固支层合梁. 首先,引入单位脉冲函数和Dirac函数,将固支边界等效为简支边界和一组纵向边界反力. 其次,以位移和应力作为状态变量,并联合基本方程建立状态空间方程,利用Fourier级数将状态空间方程进行简化. 然后,根据相邻层界面处位移和应力的连续性关系,推导出层合梁顶层和底层之间的位移和应力关系. 最后,利用层合结构上下表面应力和位移的边界条件,最终确定正交各向异性固支层合梁内任意一点的位移和应力. 收敛性和对比分析表明了该方法的有效性和准确性. 同时,探究了温度环境和长厚比对正交各向异性固支层合梁内位移和应力分布的影响.
  • 图  1  正交各向异性固支层合梁结构示意图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Diagram of the clamped orthotropic laminated beam

    图  2  固支边界的等效几何模型

    Figure  2.  The equivalent geometric model for the laminated beam with clamped supports

    图  3  位移和应力分析的流程图

    Figure  3.  The flowchart for analyzing displacements and stresses

    图  4  在不同温度环境中,层合梁在x=0.8 m处,u, v, σxτxy沿厚度方向的分布

    Figure  4.  Distributions of u, v, σx and τxy along the thickness direction at x=0.8 m for the laminated beam in different temperature environments

    图  5  温度环境ΔT=40 ℃时,层间应力σxy=0.2 m和0.6 m处沿x方向的分布

    Figure  5.  Distributions of σx for ΔT=40 ℃ at y=0.2 m and 0.6 m along the x direction

    图  6  不同长厚比的层合梁在x=L/10处,u, v, σxτxy沿厚度方向的分布

    Figure  6.  Distributions of u, v, σx and τxy along the thickness direction at x=L/10 for the laminated beam with different length-to-thickness ratios

    表  1  材料属性[46-48]

    Table  1.   Material properties[46-48]

    material E1/GPa E2/GPa G12/GPa μ12 α1/(10-5-1) α2/(10-5-1)
    steel 200 200 76.9 0.30 1.2 1.2
    concrete 30 30 12.5 0.20 0.7 0.7
    timber 12.7 0.98 0.8 0.37 0.31 2.36
    下载: 导出CSV

    表  2  位移和应力收敛性分析

    Table  2.   Numerical solutions of displacements and stresses

    n1/n2/n3 M x=2 m, y=0.05 m x=6 m, y=0.3 m
    u/mm v/mm τxy/MPa σx/MPa u/mm v/mm τxy/MPa σx/MPa
    3/8/3 15 0.002 16 -0.624 -0.030 1 -219 0.040 5 -0.113 0.005 29 -3.70
    20 0.002 21 -0.621 -0.031 3 -212 0.038 8 -0.112 0.005 15 -4.09
    25 0.002 22 -0.622 -0.033 3 -218 0.037 7 -0.105 0.005 16 -3.95
    30 0.002 22 -0.622 -0.033 3 -218 0.037 7 -0.105 0.005 15 -3.94
    35 0.002 22 -0.621 -0.033 3 -216 0.037 7 -0.105 0.005 15 -3.95
    4/10/4 15 0.002 18 -0.623 -0.030 7 -219 0.040 9 -0.106 0.005 25 -3.70
    20 0.001 99 -0.620 -0.031 7 -212 0.039 3 -0.103 0.005 66 -4.03
    25 0.002 12 -0.622 -0.033 3 -218 0.037 7 -0.105 0.005 16 -3.95
    30 0.002 22 -0.622 -0.033 3 -218 0.037 7 -0.105 0.005 15 -3.95
    35 0.002 22 -0.622 -0.033 3 -218 0.037 7 -0.105 0.005 15 -3.95
    5/12/5 15 0.002 18 -0.624 -0.030 3 -219 0.040 7 -0.108 0.005 62 -3.70
    20 0.002 00 -0.620 -0.033 1 -212 0.039 1 -0.106 0.005 22 -4.19
    25 0.002 22 -0.622 -0.033 3 -218 0.038 9 -0.105 0.005 15 -3.95
    30 0.002 22 -0.622 -0.033 3 -218 0.037 7 -0.105 0.005 15 -3.95
    35 0.002 22 -0.622 -0.033 3 -218 0.037 7 -0.105 0.005 15 -3.95
    下载: 导出CSV

    表  3  本文方法与有限元解的比较

    Table  3.   Comparison of the present method with the FE solution

    position method u/mm v/mm σx/MPa τxy/MPa
    x=1 m y=0 m present -0.006 90 -0.693 -209 0
    FE -0.006 92 -0.688 -209 0
    y=0.25 m present 0.034 70 -0.215 -4.13 0.011 0
    FE 0.034 80 -0.215 -4.10 0.011 0
    y=0.4 m present 0.037 30 0.112 -4.05 0.010 8
    FE 0.037 80 0.113 -4.11 0.010 3
    y=0.65 m present -0.035 80 0.620 -210 -0.906 0
    FE -0.035 40 0.617 -214 -0.905 0
    下载: 导出CSV
  • [1] RAMKUMAR V R, ANAND N, PRAKASH V, et al. Experimental study on the performance of fiber-reinforced laminated veneer lumber produced using Melia dubia for structural applications[J]. Construction and Building Materials, 2024, 417: 135325. doi: 10.1016/j.conbuildmat.2024.135325
    [2] ZHANG L, LIU W, AHMAD OMAR A, et al. Postfire performance of pultruded wood-cored GFRP sandwich beams[J]. Thin-Walled Structures, 2023, 193: 111240. doi: 10.1016/j.tws.2023.111240
    [3] 宋肖肖, 李顶河. 复合材料层合板壳结构分析理论研究进展[J]. 应用力学学报, 2024, 41(5): 973-998.

    SONG Xiaoxiao, LI Dinghe. Research progress of analysis theories for composite laminated plates and shells[J]. Chinese Journal of Applied Mechanics, 2024, 41(5): 973-998. (in Chinese)
    [4] 黄越, 李海滨. 复合材料层合板低速冲击响应和损伤分析[J]. 力学季刊, 2023, 44(1): 142-149.

    HUANG Yue, LI Haibin. Low-velocity impact response and damage analysis of composite laminates[J]. Chinese Quarterly of Mechanics, 2023, 44(1): 142-149. (in Chinese)
    [5] 纪正江, 程琳豪, 郑锡涛, 等. 基于碳纤维的层合结构双极化电磁吸波及其弯曲性能设计[J]. 应用数学和力学, 2024, 45(8): 1096-1105. doi: 10.21656/1000-0887.450102

    JI Zhengjiang, CHENG Linhao, ZHENG Xitao, et al. Electromagnetic wave dual-polarized absorption and flexural performance design of composite laminates based on carbon fibers[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1096-1105. (in Chinese) doi: 10.21656/1000-0887.450102
    [6] TIMOSHENKO S P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1921, 41(245): 744-746. doi: 10.1080/14786442108636264
    [7] LEWANDOWSKI R, WIELENTEJCZYK P, LITEWKA P. Dynamic characteristics of multi-layered viscoelastic beams using the refined zig-zag theory[J]. Composite Structures, 2021, 259: 113212. doi: 10.1016/j.compstruct.2020.113212
    [8] TORNABENE F, VISCOTI M, DIMITRI R. Static analysis of anisotropic doubly-curved shell subjected to concentrated loads employing higher order layer-wise theories[J]. Computer Modeling in Engineering & Sciences, 2023, 134(2): 1393-1468.
    [9] 陈玲俐, 赵晓昱. 基于经典层合板理论的简支梁力学分析[J]. 力学与实践, 2019, 41(2): 152-156.

    CHEN Lingli, ZHAO Xiaoyu. Mechanical analysis of simply supported beam based on classical laminated plate theory[J]. Mechanics in Engineering, 2019, 41(2): 152-156. (in Chinese)
    [10] 赵迅鹏, 孙双双, 王洋. 湿热环境下玻/碳纤维混杂复合材料弯曲强度的宏观力学分析[J]. 复合材料科学与工程, 2022(9): 41-47.

    ZHAO Xunpeng, SUN Shuangshuang, WANG Yang. Macro-mechanical analysis of flexural strength of glass/carbon fiber hybrid composites in the hydrothermal environment[J]. Composites Science and Engineering, 2022(9): 41-47. (in Chinese)
    [11] GHASEMI A R, TABATABAEIAN A, MORADI M. Residual stress and failure analyses of polymer matrix composites considering thermal cycling and temperature effects based on classical laminate plate theory[J]. Journal of Composite Materials, 2019, 53(21): 3021-3032. doi: 10.1177/0021998318812127
    [12] PAKNEJAD A, RAHIMI G, SALMANI H. Analytical solution and numerical validation of piezoelectric energy harvester patch for various thin multilayer composite plates[J]. Archive of Applied Mechanics, 2018, 88(7): 1139-1161. doi: 10.1007/s00419-018-1363-0
    [13] XIN H, MOSALLAM A, LIU Y, et al. Analytical and experimental evaluation of flexural behavior of FRP pultruded composite profiles for bridge deck structural design[J]. Construction and Building Materials, 2017, 150: 123-149. doi: 10.1016/j.conbuildmat.2017.05.212
    [14] HAUCK B, SZEKRÉNYES A. Fracture mechanical finite element analysis for delaminated composite plates applying the first-order shear deformation plate theory[J]. Composite Structures, 2023, 308: 116719. doi: 10.1016/j.compstruct.2023.116719
    [15] 徐宏宇, 沈峰, 聂国华. 低温下含分层的复合材料层合板渗漏问题研究[J]. 华中科技大学学报(自然科学版), 2023, 51(1): 34-41.

    XU Hongyu, SHEN Feng, NIE Guohua. Research on leakage of composite laminated structure with delamination at low temperature[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(1): 34-41. (in Chinese)
    [16] SZEKRÉNYES A. Application of differential quadrature method to delaminated first-order shear deformable composite plates[J]. Thin-Walled Structures, 2021, 166: 108028. doi: 10.1016/j.tws.2021.108028
    [17] 夏飞, 薛江红, 何赞航, 等. 湿热环境中含脱层复合材料层合板的界面裂纹扩展[J]. 北京航空航天大学学报, 2022, 48(12): 2460-2472.

    XIA Fei, XUE Jianghong, HE Zanhang, et al. Interfacial crack growth of delaminated composite laminates under hygrothermal environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2460-2472. (in Chinese)
    [18] BELARDI V G, FANELLI P, VIVIO F. First-order shear deformation analysis of rectilinear orthotropic composite circular plates undergoing transversal loads[J]. Composites Part B: Engineering, 2019, 174: 107015. doi: 10.1016/j.compositesb.2019.107015
    [19] BUI X B, NGUYEN T K, NGUYEN N D, et al. A general higher-order shear deformation theory for buckling and free vibration analysis of laminated thin-walled composite I-beams[J]. Composite Structures, 2022, 295: 115775. doi: 10.1016/j.compstruct.2022.115775
    [20] 周振龙, 梅志远, 顾东杰, 等. 基于高阶剪切变形理论的层合板透声性能分析[J]. 海军工程大学学报, 2022, 34(6): 107-112.

    ZHOU Zhenlong, MEI Zhiyuan, GU Dongjie, et al. Transmission characteristic of laminated composite plate based on high order shear deformation theory[J]. Journal of Naval University of Engineering, 2022, 34(6): 107-112. (in Chinese)
    [21] 张承宗. 基于Reddy简化高阶剪切理论的复合材料对称角铺设矩形板横向弯曲一般解析解[J]. 宇航总体技术, 2018, 2(5): 28-36.

    ZHANG Chengzong. General analytical solutions for transverse bending problem of symmetrical angle-ply laminated rectangular plate based on reddy simplified high order shear deformation theory[J]. Astronautical Systems Engineering Technology, 2018, 2(5): 28-36. (in Chinese)
    [22] 贺丹, 张海波, 高艺航. 基于Reddy型三阶剪切变形理论的复合材料加筋圆柱壳的屈曲计算[J]. 沈阳航空航天大学学报, 2022, 39(3): 8-18.

    HE Dan, ZHANG Haibo, GAO Yihang. Buckling calculation of composite stiffened cylindrical shell based on Reddy's third-order shear deformation theory[J]. Journal of Shenyang Aerospace University, 2022, 39(3): 8-18. (in Chinese)
    [23] MALIKAN M, EREMEYEV V A. A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition[J]. Composite Structures, 2020, 249: 112486. doi: 10.1016/j.compstruct.2020.112486
    [24] LI X, SONG M, YANG J, et al. Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams[J]. Nonlinear Dynamics, 2019, 95(3): 1807-1826. doi: 10.1007/s11071-018-4660-9
    [25] 杨加明, 孙良新, 吴丽娟, 等. 湿热环境下复合材料层板的几何非线性分析[J]. 工程力学, 2005, 22(5): 59-63.

    YANG Jiaming, SUN Liangxin, WU Lijuan, et al. Geometrically nonlinear analysis of laminated composite plates under hygrothermal environments[J]. Engineering Mechanics, 2005, 22(5): 59-63. (in Chinese)
    [26] MALEKIMOGHADAM R, AHMAD HOSSEINI S, ICARDI U. Bending analysis of carbon nanotube coated-fiber multi-scale composite beams using the refined zigzag theory[J]. Aerospace Science and Technology, 2023, 138: 108328. doi: 10.1016/j.ast.2023.108328
    [27] LEWANDOWSKI R, LITEWKA P, WIELENTEJCZYK P. Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory, part 1: theoretical background[J]. Composite Structures, 2021, 278: 114547. doi: 10.1016/j.compstruct.2021.114547
    [28] 杨胜奇, 张永存, 刘书田. 一种准确预测层合梁结构层间剪应力的新锯齿理论[J]. 航空学报, 2019, 40(11): 223028.

    YANG Shengqi, ZHANG Yongcun, LIU Shutian. A new zig-zag theory for accurately predicting interlaminar shear stress of laminated beam structures[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 223028. (in Chinese)
    [29] KUTLU A, DORDUNCU M, RABCZUK T. A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates[J]. Composite Structures, 2021, 267: 113886. doi: 10.1016/j.compstruct.2021.113886
    [30] DORDUNCU M. Peridynamic modeling of delaminations in laminated composite beams using refined zigzag theory[J]. Theoretical and Applied Fracture Mechanics, 2021, 112: 102832. doi: 10.1016/j.tafmec.2020.102832
    [31] HAN B, HUI W W, ZHANG Q C, et al. A refined quasi-3D zigzag beam theory for free vibration and stability analysis of multilayered composite beams subjected to thermomechanical loading[J]. Composite Structures, 2018, 204: 620-633. doi: 10.1016/j.compstruct.2018.08.005
    [32] 任晓辉, 陈万吉. C0型高阶锯齿理论及复合材料厚梁热应力分析[J]. 计算力学学报, 2015, 32(1): 77-82.

    REN Xiaohui, CHEN Wanji. Thermal stress analysis of thick composite beams based on C0-type higher-order zig-zag theory[J]. Chinese Journal of Computational Mechanics, 2015, 32(1): 77-82. (in Chinese)
    [33] GUENANOU A, HOUMAT A, CHEBOUT R, et al. Layer-wise optimization of elliptical laminates with curvilinear fibers[J]. Mechanics of Advanced Materials and Structures, 2023, 30(3): 413-422. doi: 10.1080/15376494.2021.2015809
    [34] 李顶河, 曹江涛, 郭巧荣. 基于逐层理论的复合材料层合结构分层损伤扩展研究[J]. 航空科学技术, 2022, 33(6): 90-102.

    LI Dinghe, CAO Jiangtao, GUO Qiaorong. Research on delamination damage progressive growth of composite laminated structures based on layerwise theory[J]. Aeronautical Science & Technology, 2022, 33(6): 90-102. (in Chinese)
    [35] REDDY J N. A generalization of two-dimensional theories of laminated composite plates[J]. Communications in Applied Numerical Methods, 1987, 3(3): 173-180. doi: 10.1002/cnm.1630030303
    [36] BAYAT Y, EKHTERAEITOUSSI H. Exact solution of thermal buckling and post buckling of composite and SMA hybrid composite beam by layerwise theory[J]. Aerospace Science and Technology, 2017, 67: 484-494. doi: 10.1016/j.ast.2017.04.029
    [37] PETROLO M, LAMBERTI A. Axiomatic/asymptotic analysis of refined layer-wise theories for composite and sandwich plates[J]. Mechanics of Advanced Materials and Structures, 2016, 23(1): 28-42. doi: 10.1080/15376494.2014.924607
    [38] 赵飞, 吴锦武, 赵龙胜. 采用分层理论计算层合板的固有频率和振型[J]. 噪声与振动控制, 2014, 34(2): 34-40.

    ZHAO Fei, WU Jinwu, ZHAO Longsheng. Analysis for natural frequencies and mode shapes of laminated composite plates using layerwise theory[J]. Noise and Vibration Control, 2014, 34(2): 34-40. (in Chinese)
    [39] WEN J, XIAO Y. The flexural behavior of cross laminated bamboo and timber (CLBT) and cross laminated timber (CLT) beams[J]. Construction and Building Materials, 2023, 408: 133739. doi: 10.1016/j.conbuildmat.2023.133739
    [40] QIAN H, WANG Z, LU C, et al. Thermal analysis for laminated plates with arbitrary supports under non-uniform temperature boundary conditions[J]. Thin-Walled Structures, 2024, 197: 111595. doi: 10.1016/j.tws.2024.111595
    [41] 赵宝生, 王敏中. 弹性板中精化理论与分解定理的等价性[J]. 应用数学和力学, 2005, 26(4): 447-455. http://www.applmathmech.cn/article/id/501

    ZHAO Baosheng, WANG Minzhong. Equivalence of the refined theory and the decomposed theorem of an elastic plate[J]. Applied Mathematics and Mechanics, 2005, 26(4): 447-455. (in Chinese) http://www.applmathmech.cn/article/id/501
    [42] YANG Z, ZHU H, YU F, et al. Thermo-mechanical coupled behavior of laminated beams with temperature-dependent viscoelastic interlayers[J]. European Journal of Mechanics A: Solids, 2023, 100: 105000. doi: 10.1016/j.euromechsol.2023.105000
    [43] QIAN H, QIU Y, LU C, et al. Analytical solutions for laminated beams subjected to non-uniform temperature boundary conditions[J]. Composite Structures, 2022, 282: 115044. doi: 10.1016/j.compstruct.2021.115044
    [44] QIAN H, QIU Y, LU C, et al. Thermal analysis for clamped laminated beams with non-uniform temperature boundary conditions[J]. Thin-Walled Structures, 2022, 179: 109693. doi: 10.1016/j.tws.2022.109693
    [45] CHINIFORUSH A A, VALIPOUR H R, AKBARNEZHAD A. Long-term coupled analysis of steel-timber composite (STC) beams[J]. Construction and Building Materials, 2021, 278: 122348. doi: 10.1016/j.conbuildmat.2021.122348
    [46] MIRSAYAR M M. Maximum principal strain criterion for fracture in orthotropic composites under combined tensile/shear loading[J]. Theoretical and Applied Fracture Mechanics, 2022, 118: 103291. doi: 10.1016/j.tafmec.2022.103291
    [47] GOLI G, BECHERINI F, DI TUCCIO M C, et al. Thermal expansion of wood at different equilibrium moisture contents[J]. Journal of Wood Science, 2019, 65(1): 4. doi: 10.1186/s10086-019-1781-9
    [48] KRIŠŤÁK L', IGAZ R, RUŽIAK I. Applying the EDPS method to the research into thermophysical properties of solid wood of coniferous trees[J]. Advances in Materials Science and Engineering, 2019, 2019: 2303720.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-04
  • 修回日期:  2025-01-23
  • 刊出日期:  2026-02-01

目录

    /

    返回文章
    返回