• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海多金属结核抽吸式集矿运动特性研究

薛景天 夏秋 贾浩 李宸

薛景天, 夏秋, 贾浩, 李宸. 深海多金属结核抽吸式集矿运动特性研究[J]. 应用数学和力学, 2025, 46(12): 1598-1611. doi: 10.21656/1000-0887.450329
引用本文: 薛景天, 夏秋, 贾浩, 李宸. 深海多金属结核抽吸式集矿运动特性研究[J]. 应用数学和力学, 2025, 46(12): 1598-1611. doi: 10.21656/1000-0887.450329
XUE Jingtian, XIA Qiu, JIA Hao, LI Chen. Study on the Motion Characteristics of Suction-Based Deep-Sea Polymetallic Nodule Mining[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1598-1611. doi: 10.21656/1000-0887.450329
Citation: XUE Jingtian, XIA Qiu, JIA Hao, LI Chen. Study on the Motion Characteristics of Suction-Based Deep-Sea Polymetallic Nodule Mining[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1598-1611. doi: 10.21656/1000-0887.450329

深海多金属结核抽吸式集矿运动特性研究

doi: 10.21656/1000-0887.450329
(我刊青年编委邹遂丰推荐)
基金项目: 

国家自然科学基金 52206056

国家级大学生创新创业训练计划项目 202410338046

浙江省自然科学基金 ZCLY24E0601

详细信息
    作者简介:

    薛景天(2004—),男,本科生(E-mail: xjt3293509927@163.com)

    通讯作者:

    贾浩(1988—),男,特聘副教授,博士(通讯作者. E-mail: jiahao@zstu.edu.cn)

  • 中图分类号: O359

Study on the Motion Characteristics of Suction-Based Deep-Sea Polymetallic Nodule Mining

(Recommended by ZOU Suifeng, M.AMM Youth Editorial Board)
  • 摘要: 多金属结核矿产资源以粗颗粒结核的形式呈面式分布于深海海床. 由于深海环境的脆弱和国际海底环境保护的紧迫性,研究集矿装置运动过程中的集矿特性和对海底的扰动具有实际意义. 采用计算流体动力学与离散元耦合方法(computational fluid dynamics and discrete element method, CFD-DEM)模拟了粗颗粒矿石在抽吸式集矿管作用下的采集过程. 结果表明,管道倾斜放置便于管道迎流侧抽吸大量矿石,有利于提高颗粒采集率. 集矿管水平运动和管道抽吸运动对流场形成叠加扰动,受该叠加扰动的影响,颗粒采集率随集矿管水平运动速度的增加先增大后减小,且一定程度上随集矿管倾斜角度的增加而增加. 海底流场的湍动能随集矿管水平运动速度的增加而减小,随集矿管倾斜角度的增加先增大后减小. 综合分析表明,集矿管水平运动速度为0.6 m/s和集矿管倾斜角度为45°是同时满足高采集率和低环境扰动的最佳工况,可为高性能深海多金属结核集矿装置的设计提供参考.
    1)  (我刊青年编委邹遂丰推荐)
  • 图  1  抽吸式集矿头计算域尺寸

    Figure  1.  The sizes of the computing domain for the suction collection model

    图  2  模型网格划分

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The mesh division of the model

    图  3  DEM中碰撞模型

    Figure  3.  The collision model in the DEM

    图  4  多颗粒采集模型计算域边界条件

    Figure  4.  The boundary conditions of the computing domain for the multi-particle collection model

    图  5  吸扬式集矿头计算域

    Figure  5.  The calculation domain of the suck-up-based collector head

    图  6  数值模拟与试验结果对比

    Figure  6.  Comparison of numerical simulation and experimental results

    图  7  vt=0.6 m/s时,不同时刻流场速度云图

    Figure  7.  Velocity contours of the flow field at different moments for vt=0.6 m/s

    图  8  vt=0.6 m/s时,不同时刻颗粒速度图

    Figure  8.  Particle velocity images at different moments for vt=0.6 m/s

    图  9  θ=30°和vt=0.6 m/s时,不同时刻颗粒速度图

    Figure  9.  Particle velocity images at different moments for θ=30° and vt=0.6 m/s

    图  10  集矿管水平运动到计算域中心时,不同集矿管水平运动速度vt下的颗粒速度

    Figure  10.  Particle velocity images for different horizontal movement speeds of collector pipe vt at the distance center

    图  11  集矿管水平运动到计算域中心时,不同集矿管水平运动速度vt下的速度场分布

    Figure  11.  The velocity contours of the flow field for different horizontal movement speeds of collector pipe vt at the distance center

    图  12  集矿管水平运动到计算域中心时,不同管道倾斜角度θ下的速度场分布

    Figure  12.  The velocity contours of the flow field for different pipe tilt angles θ at the distance center

    图  13  颗粒采集率随集矿管水平运动速度vt和管道倾斜角度θ的变化情况

    Figure  13.  The variations of particle collection rates with horizontal movement speeds of collector pipe vt and pipe tilt angle θ

    图  14  湍动能特征线

    Figure  14.  The characteristic line of the turbulent kinetic energy

    图  15  垂直抽吸完成时不同集矿管水平运动速度vt, 对应的特征线上的湍动能k

    Figure  15.  The k values on the corresponding characteristic line for different horizontal movement speeds vt at the completion of vertical suction

    图  16  集矿管水平运动速度vt=0.3 m/s时,不同管道倾斜角度θx=-950~0 mm的k

    Figure  16.  The k values for different pipe tilt angles θ ranging from -950~0 mm on the x-axis for horizontal movement speed vt=0.3 m/s

    图  17  采集完成时,不同管道倾斜角度θ,流场湍动能

    Figure  17.  Turbulent kinetic energy contours of the flow field for different tilt angles θ at the collection completion

    表  1  多颗粒抽吸模型网格无关性验证

    Table  1.   Mesh independence verification of the multi-particle suction model

    case number of cells time step/s flux/(kg/s) relative deviation/%
    E1 776 254 0.000 3 35.08
    E2 868 943 0.000 3 35.56 1.37
    E3 993 654 0.000 3 35.72 0.44
    E4 1 245 964 0.000 3 35.79 0.19
    下载: 导出CSV

    表  2  多颗粒抽吸模型时间步长无关性验证

    Table  2.   Time step irrelevance verification of the multi-particle suction model

    case time step/s number of cells flux/(kg/s) relative deviation/%
    M1 0.000 8 868 943 34.23
    M2 0.000 5 868 943 35.12 2.60
    M3 0.000 3 868 943 35.56 1.25
    M4 0.000 1 868 943 35.76 0.56
    下载: 导出CSV
  • [1] 刘少军, 刘畅, 戴瑜. 深海采矿装备研发的现状与进展[J]. 机械工程学报, 2014, 50(2): 8-18.

    LIU Shaojun, LIU Chang, DAI Yu. Status and progress on researches and developments of deep ocean mining equipments[J]. Journal of Mechanical Engineering, 2014, 50(2): 8-18. (in Chinese)
    [2] 胡经朝, 赵国成, 肖龙飞. 基于康达效应的海底集矿装置流场与集矿特性试验研究[J]. 海洋工程, 2022, 40(5): 132-138.

    HU Jingchao, ZHAO Guocheng, XIAO Longfei. Experimental investigation on flow field and collecting characteristics of mining device based on Coandǎ effect[J]. The Ocean Engineering, 2022, 40(5): 132-138. (in Chinese)
    [3] CHEN Y X, XIONG H, CHENG H, et al. Effect of particle motion on the hydraulic collection of coarse spherical particles[J]. Acta Mechanica Sinica, 2020, 36(1): 72-81. doi: 10.1007/s10409-019-00922-6
    [4] AMUDHA K, BHATTACHARYA S K, SHARMA R, et al. Influence of flow area zone and vertical lift motion of polymetallic nodules in hydraulic collecting[J]. Ocean Engineering, 2024, 294: 116745. doi: 10.1016/j.oceaneng.2024.116745
    [5] KUBICKI D, SIMON L. Slurry transport in a pipeline-comparison of CFD and DEM models[C]//Ninth International Conference on CFD in the Minerals and Process Industries. Melbourne, Australia, 2012.
    [6] RAMESH D R. Analysis of inferior vena cava filter using STAR CCM+'s Lagrangian particle tracking and DEM-CFD modelling approach[D]. Hyderabad, India: Birla Institute of Technology and Science, 2013.
    [7] 李亚林. 变曲率流道内固液两相CFD-DEM方法及在大型脱硫泵中的应用[D]. 镇江: 江苏大学, 2015.

    LI Yalin. Effcet of continuously varying curvature on solid-liquid two-phase flow by CFD-DEM and its application in large desulfurization pump[D]. Zhenjiang: Jiangsu University, 2015. (in Chinese)
    [8] AKHSHIK S, BEHZAD M, RAJABI M. CFD-DEM simulation of the hole cleaning process in a deviated well drilling: the effects of particle shape[J]. Particuology, 2016, 25: 72-82. doi: 10.1016/j.partic.2015.02.008
    [9] ZHANG Y Y, DAI Y, ZHU X. Numerical investigation of recommended operating parameters considering movement of polymetallic nodule particles during hydraulic lifting of deep-sea mining pipeline[J]. Sustainability, 2023, 15(5): 4248. doi: 10.3390/su15054248
    [10] LI Y, LIU S, HU X. Solid-liquid two-phase flow in deep-sea mining pipelines based on CFD-DEM[J]. Ships and Offshore Structures, 2023, 18(11): 1617-1625. doi: 10.1080/17445302.2022.2129928
    [11] 夏秋, 贾浩, 宿向辉, 等. 海底矿石颗粒水力采集运动特性研究[J]. 工程热物理学报, 2023, 44(3): 660-667.

    XIA Qiu, JIA Hao, SU Xianghui, et al. Motion characterization of seabed ore particle in hydraulic collecting[J]. Journal of Engineering Thermophysics, 2023, 44(3): 660-667. (in Chinese)
    [12] NINER H J, ARDRON J A, ESCOBAR E G, et al. Deep-sea mining with no net loss of biodiversity-an impossible aim[J]. Frontiers in Marine Science, 2018, 5: 1-12. doi: 10.3389/fmars.2018.00001
    [13] 李雨瑶, 赵国成, 肖龙飞. 不同水力集矿模型的矿粒采集及环境扰动特性数值研究[J]. 上海交通大学学报, 2024, 58(7): 1036-1046.

    LI Yuyao, ZHAO Guocheng, XIAO Longfei. Numerical study on collection and environmental disturbance characteristics of different nodule collecting models[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1036-1046. (in Chinese)
    [14] ZHAO G, XIAO L, HU J, et al. Fluid flow and particle motion behaviors during seabed nodule pickup: an experimental study[J]. International Journal of Offshore and Polar Engineering, 2021, 31(2): 210-219. doi: 10.17736/ijope.2021.jc803
    [15] 费龙, 郑成荣, 金强, 等. 深海多金属结核开采装备技术发展综述[J]. 船舶, 2024, 35(6): 1-14.

    FEI Long, ZHENG Chengrong, JIN Qiang, et al. Overview of the development of equipment and technology for deep-sea polymetallic nodule mining[J]. Ship & Boat, 2024, 35(6): 1-14. (in Chinese)
    [16] 刘唐京, 王企鲲, 邹赫. 高Re数层流管道中颗粒聚集特性的数值研究[J]. 应用数学和力学, 2023, 44(1): 70-79. doi: 10.21656/1000-0887.430075

    LIU Tangjing, WANG Qikun, ZOU He. Numerical investigation of particle focusing patterns in laminar pipe flow with high Reynolds numbers[J]. Applied Mathematics and Mechanics, 2023, 44(1): 70-79. (in Chinese) doi: 10.21656/1000-0887.430075
    [17] 赵国成. 深海采矿水力集矿方法与流体-颗粒动力特性研究[D]. 上海: 上海交通大学, 2022.

    ZHAO Guocheng. Research on hydraulic collecting methods and fluid-particle dynamic characteristics for deep-sea mining[D]. Shanghai: Shanghai Jiao Tong University, 2022. (in Chinese)
    [18] Clift R, Grace J R, Weber M E. Bubbles, drops, and particles[J]. Drying Technology, 1978.
    [19] CROWE C T, SOMMERFELD M, TSUJI Y. Multiphase Flows With Droplets and Particles[M]. Boca Raton, FL: CRC, 1998.
    [20] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [21] HU J C, ZHAO G C, XIAO L F, et al. Experimental investigation on characteristics of flow field in 'suck-up-based' and 'coandǎ-effect-based' nodule pick-up devices[C]//ISOPE International Ocean and Polar Engineering Conference, 2020: ISOPE-I-20-1110.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  28
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-13
  • 修回日期:  2025-04-05
  • 刊出日期:  2025-12-01

目录

    /

    返回文章
    返回