• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强制风冷对玻璃纤维/乙烯树脂复合材料高周疲劳性能的影响

赵邦耀 王垠 胡义锋 魏雄 李伟 胡煜 王建强 张志家 张钱城

赵邦耀, 王垠, 胡义锋, 魏雄, 李伟, 胡煜, 王建强, 张志家, 张钱城. 强制风冷对玻璃纤维/乙烯树脂复合材料高周疲劳性能的影响[J]. 应用数学和力学, 2026, 47(2): 136-144. doi: 10.21656/1000-0887.450337
引用本文: 赵邦耀, 王垠, 胡义锋, 魏雄, 李伟, 胡煜, 王建强, 张志家, 张钱城. 强制风冷对玻璃纤维/乙烯树脂复合材料高周疲劳性能的影响[J]. 应用数学和力学, 2026, 47(2): 136-144. doi: 10.21656/1000-0887.450337
ZHAO Bangyao, WANG Yin, HU Yifeng, WEI Xiong, LI Wei, HU Yu, WANG Jianqiang, ZHANG Zhijia, ZHANG Qiancheng. Effects of Forced Cooling on High Cycle Fatigue Properties of Glass Fiber-Vinyl Resin Composites[J]. Applied Mathematics and Mechanics, 2026, 47(2): 136-144. doi: 10.21656/1000-0887.450337
Citation: ZHAO Bangyao, WANG Yin, HU Yifeng, WEI Xiong, LI Wei, HU Yu, WANG Jianqiang, ZHANG Zhijia, ZHANG Qiancheng. Effects of Forced Cooling on High Cycle Fatigue Properties of Glass Fiber-Vinyl Resin Composites[J]. Applied Mathematics and Mechanics, 2026, 47(2): 136-144. doi: 10.21656/1000-0887.450337

强制风冷对玻璃纤维/乙烯树脂复合材料高周疲劳性能的影响

doi: 10.21656/1000-0887.450337
基金项目: 

国家自然科学基金(面上项目) 12072250

中国水利水电建设工程咨询西北有限公司科研基金项目 202401110

详细信息
    作者简介:

    赵邦耀(1999—),男,硕士生(E-mail: zbyofgxy@163.com)

    通讯作者:

    王垠(1986—),女,讲师,博士(通信作者. E-mail: wangyin@xaut.edu.cn)

  • 中图分类号: O346.2

Effects of Forced Cooling on High Cycle Fatigue Properties of Glass Fiber-Vinyl Resin Composites

  • 摘要: 为研究强制风冷对单向拉挤成型玻璃纤维/乙烯树脂复合材料疲劳性能的影响,进行了准静态拉伸试验,获取其破坏极限载荷并且分析其破坏模式. 在此基础上,采用带有强制风冷的高频疲劳试验机以及监控温度变化的红外摄像机,研究了有无强制风冷措施下该复合材料拉-拉疲劳行为,对比分析了有无强制风冷措施对试件疲劳寿命的影响规律. 试验结果表明:在155~240 MPa应力水平下,未施加强制风冷措施试件表面温度快速上升导致试件失效,而在155 MPa应力水平以下,温度先缓慢上升后出现稳态;采用强制风冷措施后,试件表面温度降低,疲劳寿命显著增长,且在140 MPa应力水平以下,有无强制风冷措施对试件的疲劳寿命无明显影响. 同时,试件疲劳断口以基体开裂为主. 该文所探究的试验方法为纤维增强复合材料疲劳试验设计提供参考和帮助.
  • 图  1  GFRP试件尺寸(单位: mm)

    Figure  1.  Dimensions of the GFRP specimen(unit: mm)

    图  2  高周疲劳试验装置及强制风冷示意图

    Figure  2.  The high cycle fatigue test device and the forced air cooling diagram

    图  3  GFRP拉伸应力应变曲线

    Figure  3.  The tensile stress-strain curves of the GFRP

    图  4  GFRP试件拉伸失效宏观破坏形貌

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Macroscopic failure patterns of the GFRP specimens in tensile failure

    图  5  有无强制风冷措施下GFRP试件S-N曲线对比

    Figure  5.  Comparison of S-N curves of the GFRP specimens with and without forced air cooling

    图  6  GFRP试件表面最高温度随循环次数变化规律

    Figure  6.  The maximum surface temperature-cycle index curves of the GFRP specimens

    图  7  GFRP在典型应力水平下疲劳试件表面温度分布

    Figure  7.  Surface temperature distributions of the GFRP under typical stress levels

    图  8  GFRP试件在不同应力水平下固有频率随循环次数变化曲线

    Figure  8.  Frequency-cycle times curve of GFRP specimens under different stress levels

    图  9  GFRP在不同应力水平下疲劳失效宏观形貌

    Figure  9.  Macroscopic failure patterns of the GFRP specimens in fatigue under different stress levels

    表  1  拉伸试验结果

    Table  1.   The results of the tensile test

    test coupons №. tensile strength/MPa tensile modulus/GPa elongation at break/%
    T-1 389.5 28.8 1.37
    T-2 412.4 31.7 1.30
    T-3 408.1 31.3 1.30
    average value 403.3 30.6 1.32
    下载: 导出CSV
  • [1] 陈伟, 袁青, 马浩瀚, 等. 基于竹纤维和钢丝网增强的玄武岩筋混凝土梁抗弯延性试验研究[J]. 应用数学和力学, 2023, 44(2): 209-219. doi: 10.21656/1000-0887.430302

    CHEN Wei, YUAN Qing, MA Haohan, et al. Experimental study on the flexural ductility of BFRP bar concrete beams with bamboo fiber and steel wire mesh[J]. Applied Mathematics and Mechanics, 2023, 44(2): 209-219. (in Chinese) doi: 10.21656/1000-0887.430302
    [2] BAKIS C E, BANK L C, BROWN V L, et al. Fiber-reinforced polymer composites for construction: state-of-the-art review[J]. Journal of Composites for Construction, 2002, 6(2): 73-87. doi: 10.1061/(ASCE)1090-0268(2002)6:2(73)
    [3] FERDOUS W, NGO T D, NGUYEN K T Q, et al. Effect of fire-retardant ceram powder on the properties of phenolic-based GFRP composites[J]. Composites Part B: Engineering, 2018, 155: 414-424. doi: 10.1016/j.compositesb.2018.09.032
    [4] 刘鑫, 吴倩倩, 于国财, 等. 碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能[J]. 应用数学和力学, 2022, 43(5): 490-498. doi: 10.21656/1000-0887.430061

    LIU Xin, WU Qianqian, YU Guocai, et al. Three-point bending properties of carbon fiber reinforced polymer composite honeycomb sandwich structures with curved wall[J]. Applied Mathematics and Mechanics, 2022, 43(5): 490-498. (in Chinese) doi: 10.21656/1000-0887.430061
    [5] FERDOUS W, MANALO A, PEAURIL J, et al. Testing and modelling the fatigue behaviour of GFRP composites: effect of stress level, stress concentration and frequency[J]. Engineering Science and Technology, an International Journal, 2020, 23(5): 1223-1232. doi: 10.1016/j.jestch.2020.01.001
    [6] VIEIRA P R, CARVALHO E M L, VIEIRA J D, et al. Experimental fatigue behavior of pultruded glass fibre reinforced polymer composite materials[J]. Composites Part B: Engineering, 2018, 146: 69-75. doi: 10.1016/j.compositesb.2018.03.040
    [7] RADHAKRISHNAN P M, RAMAJEYATHILAGAM K. Effect of stress ratio on tension-tension fatigue behaviour of woven angle ply GFRP laminates[J]. International Journal of Fatigue, 2023, 172: 107633. doi: 10.1016/j.ijfatigue.2023.107633
    [8] HUANG Y, LIU S, XIAO G, et al. Experimental investigation into the effects of adhesion wear on belt grinding of glass fiber reinforced plastics[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109: 463-473. doi: 10.1007/s00170-020-05610-5
    [9] 孔令美, 郑威, 高泉喜, 等. 玻纤增强树脂基复合材料的疲劳性能研究[J]. 化工新型材料, 2015, 43(7): 177-179.

    KONG Lingmei, ZHENG Wei, GAO Quanxi, et al. Study on the fatigue characteristic of glass fiber reinforced resin composites[J]. New Chemical Materials, 2015, 43(7): 177-179. (in Chinese)
    [10] SAPOZHNIKOV S B, SHABLEY A A, IGNATOVA A V. Predicting the kinetics of hysteretic self-heating of GFRPs under high-frequency cyclic loading[J]. Composite Structures, 2019, 226: 111214. doi: 10.1016/j.compstruct.2019.111214
    [11] WU T, YAO W, XU C, et al. A natural frequency degradation model for very high cycle fatigue of woven fiber reinforced composite[J]. International Journal of Fatigue, 2020, 134: 105398. doi: 10.1016/j.ijfatigue.2019.105398
    [12] AMRAEI J, KATUNIN A. Recent advances in limiting fatigue damage accumulation induced by self-heating in polymer: matrix composites[J]. Polymers, 2022, 14(24): 5384. doi: 10.3390/polym14245384
    [13] DEMERS C E. Fatigue strength degradation of E-glass FRP composites and carbon FRP composites[J]. Construction and Building Materials, 1998, 12(5): 311-318. doi: 10.1016/S0950-0618(98)00012-9
    [14] HOSOI A, TAKAMURA K, SATO N, et al. Quantitative evaluation of fatigue damage growth in CFRP laminates that changes due to applied stress level[J]. International Journal of Fatigue, 2011, 33(6): 781-787. doi: 10.1016/j.ijfatigue.2010.12.017
    [15] LIU X, LI F, WANG X, et al. Fatigue damage propagation of FRP under coupling effect of cyclic load and corrosion[J]. Polymer Composites, 2024, 45(1): 933-945. doi: 10.1002/pc.27827
    [16] BACKE D, BALLE F, EIFLER D. Fatigue testing of CFRP in the very high cycle fatigue (VHCF) regime at ultrasonic frequencies[J]. Composites Science and Technology, 2015, 106: 93-99. doi: 10.1016/j.compscitech.2014.10.020
    [17] MALPOT A, TOUCHARD F, BERGAMO S. Influence of moisture on the fatigue behaviour of a woven thermoplastic composite used for automotive application[J]. Materials & Design, 2016, 98: 12-19.
    [18] 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Fiber-reinforced plastics composites: determination of tensile properties: GB/T 1447—2005[S]. Beijing: Standards Press of China, 2005. (in Chinese)
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-20
  • 修回日期:  2025-03-10
  • 刊出日期:  2026-02-01

目录

    /

    返回文章
    返回