Effects of Forced Cooling on High Cycle Fatigue Properties of Glass Fiber-Vinyl Resin Composites
-
摘要: 为研究强制风冷对单向拉挤成型玻璃纤维/乙烯树脂复合材料疲劳性能的影响,进行了准静态拉伸试验,获取其破坏极限载荷并且分析其破坏模式. 在此基础上,采用带有强制风冷的高频疲劳试验机以及监控温度变化的红外摄像机,研究了有无强制风冷措施下该复合材料拉-拉疲劳行为,对比分析了有无强制风冷措施对试件疲劳寿命的影响规律. 试验结果表明:在155~240 MPa应力水平下,未施加强制风冷措施试件表面温度快速上升导致试件失效,而在155 MPa应力水平以下,温度先缓慢上升后出现稳态;采用强制风冷措施后,试件表面温度降低,疲劳寿命显著增长,且在140 MPa应力水平以下,有无强制风冷措施对试件的疲劳寿命无明显影响. 同时,试件疲劳断口以基体开裂为主. 该文所探究的试验方法为纤维增强复合材料疲劳试验设计提供参考和帮助.
-
关键词:
- 玻璃纤维增强复合材料 /
- S-N曲线 /
- 红外监测 /
- 刚度退化
Abstract: To study the effects of forced air cooling on the fatigue performance of glass fiber-vinyl resin composites fabricated through unidirectional pultrusion, a quasi-static tensile test was carried out to obtain the ultimate load of failure and analyze its failure modes. On this basis, a high-frequency fatigue testing device with forced air cooling and an infrared camera to monitor the temperature change were used to study the pull-pull fatigue behavior of the composite with or without forced air cooling, and the effects of the forced air cooling on the fatigue life of the specimen were compared and analyzed. The test results show that, under a stress level within 155~240 MPa, the surface temperature of the specimen without forced air cooling measures rises rapidly, leading to the failure of the specimen, while under a stress level of 155 MPa, the temperature rises slowly first and then stabilizes. After forced air cooling, the surface temperature of the specimens will decrease, and the fatigue life will increase significantly, and the stress level will stay below 140MPa. The fatigue life of the specimens is not significantly influenced by forced air cooling measures. Furthermore, the fatigue fracture of the sample is mainly based on the matrix cracking. The proposed experimental method provides reference and guidance for fatigue experimental design of fiber reinforced composites.-
Key words:
- GFRP /
- S-N curve /
- infrared monitoring /
- stiffness degradation
-
表 1 拉伸试验结果
Table 1. The results of the tensile test
test coupons №. tensile strength/MPa tensile modulus/GPa elongation at break/% T-1 389.5 28.8 1.37 T-2 412.4 31.7 1.30 T-3 408.1 31.3 1.30 average value 403.3 30.6 1.32 -
[1] 陈伟, 袁青, 马浩瀚, 等. 基于竹纤维和钢丝网增强的玄武岩筋混凝土梁抗弯延性试验研究[J]. 应用数学和力学, 2023, 44(2): 209-219. doi: 10.21656/1000-0887.430302CHEN Wei, YUAN Qing, MA Haohan, et al. Experimental study on the flexural ductility of BFRP bar concrete beams with bamboo fiber and steel wire mesh[J]. Applied Mathematics and Mechanics, 2023, 44(2): 209-219. (in Chinese) doi: 10.21656/1000-0887.430302 [2] BAKIS C E, BANK L C, BROWN V L, et al. Fiber-reinforced polymer composites for construction: state-of-the-art review[J]. Journal of Composites for Construction, 2002, 6(2): 73-87. doi: 10.1061/(ASCE)1090-0268(2002)6:2(73) [3] FERDOUS W, NGO T D, NGUYEN K T Q, et al. Effect of fire-retardant ceram powder on the properties of phenolic-based GFRP composites[J]. Composites Part B: Engineering, 2018, 155: 414-424. doi: 10.1016/j.compositesb.2018.09.032 [4] 刘鑫, 吴倩倩, 于国财, 等. 碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能[J]. 应用数学和力学, 2022, 43(5): 490-498. doi: 10.21656/1000-0887.430061LIU Xin, WU Qianqian, YU Guocai, et al. Three-point bending properties of carbon fiber reinforced polymer composite honeycomb sandwich structures with curved wall[J]. Applied Mathematics and Mechanics, 2022, 43(5): 490-498. (in Chinese) doi: 10.21656/1000-0887.430061 [5] FERDOUS W, MANALO A, PEAURIL J, et al. Testing and modelling the fatigue behaviour of GFRP composites: effect of stress level, stress concentration and frequency[J]. Engineering Science and Technology, an International Journal, 2020, 23(5): 1223-1232. doi: 10.1016/j.jestch.2020.01.001 [6] VIEIRA P R, CARVALHO E M L, VIEIRA J D, et al. Experimental fatigue behavior of pultruded glass fibre reinforced polymer composite materials[J]. Composites Part B: Engineering, 2018, 146: 69-75. doi: 10.1016/j.compositesb.2018.03.040 [7] RADHAKRISHNAN P M, RAMAJEYATHILAGAM K. Effect of stress ratio on tension-tension fatigue behaviour of woven angle ply GFRP laminates[J]. International Journal of Fatigue, 2023, 172: 107633. doi: 10.1016/j.ijfatigue.2023.107633 [8] HUANG Y, LIU S, XIAO G, et al. Experimental investigation into the effects of adhesion wear on belt grinding of glass fiber reinforced plastics[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109: 463-473. doi: 10.1007/s00170-020-05610-5 [9] 孔令美, 郑威, 高泉喜, 等. 玻纤增强树脂基复合材料的疲劳性能研究[J]. 化工新型材料, 2015, 43(7): 177-179.KONG Lingmei, ZHENG Wei, GAO Quanxi, et al. Study on the fatigue characteristic of glass fiber reinforced resin composites[J]. New Chemical Materials, 2015, 43(7): 177-179. (in Chinese) [10] SAPOZHNIKOV S B, SHABLEY A A, IGNATOVA A V. Predicting the kinetics of hysteretic self-heating of GFRPs under high-frequency cyclic loading[J]. Composite Structures, 2019, 226: 111214. doi: 10.1016/j.compstruct.2019.111214 [11] WU T, YAO W, XU C, et al. A natural frequency degradation model for very high cycle fatigue of woven fiber reinforced composite[J]. International Journal of Fatigue, 2020, 134: 105398. doi: 10.1016/j.ijfatigue.2019.105398 [12] AMRAEI J, KATUNIN A. Recent advances in limiting fatigue damage accumulation induced by self-heating in polymer: matrix composites[J]. Polymers, 2022, 14(24): 5384. doi: 10.3390/polym14245384 [13] DEMERS C E. Fatigue strength degradation of E-glass FRP composites and carbon FRP composites[J]. Construction and Building Materials, 1998, 12(5): 311-318. doi: 10.1016/S0950-0618(98)00012-9 [14] HOSOI A, TAKAMURA K, SATO N, et al. Quantitative evaluation of fatigue damage growth in CFRP laminates that changes due to applied stress level[J]. International Journal of Fatigue, 2011, 33(6): 781-787. doi: 10.1016/j.ijfatigue.2010.12.017 [15] LIU X, LI F, WANG X, et al. Fatigue damage propagation of FRP under coupling effect of cyclic load and corrosion[J]. Polymer Composites, 2024, 45(1): 933-945. doi: 10.1002/pc.27827 [16] BACKE D, BALLE F, EIFLER D. Fatigue testing of CFRP in the very high cycle fatigue (VHCF) regime at ultrasonic frequencies[J]. Composites Science and Technology, 2015, 106: 93-99. doi: 10.1016/j.compscitech.2014.10.020 [17] MALPOT A, TOUCHARD F, BERGAMO S. Influence of moisture on the fatigue behaviour of a woven thermoplastic composite used for automotive application[J]. Materials & Design, 2016, 98: 12-19. [18] 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.Fiber-reinforced plastics composites: determination of tensile properties: GB/T 1447—2005[S]. Beijing: Standards Press of China, 2005. (in Chinese) -
下载:
渝公网安备50010802005915号