• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同干扰下串列双PTC圆柱的振动及功率稳定性研究

章大海 张帅 刘硕硕 侯啸海 江耀鑫

章大海, 张帅, 刘硕硕, 侯啸海, 江耀鑫. 不同干扰下串列双PTC圆柱的振动及功率稳定性研究[J]. 应用数学和力学, 2026, 47(2): 203-218. doi: 10.21656/1000-0887.450338
引用本文: 章大海, 张帅, 刘硕硕, 侯啸海, 江耀鑫. 不同干扰下串列双PTC圆柱的振动及功率稳定性研究[J]. 应用数学和力学, 2026, 47(2): 203-218. doi: 10.21656/1000-0887.450338
ZHANG Dahai, ZHANG Shuai, LIU Shuoshuo, HOU Xiaohai, JIANG Yaoxin. Study on Vibration and Power Stability of Tandem Double PTC Cylinders Under Different Perturbations[J]. Applied Mathematics and Mechanics, 2026, 47(2): 203-218. doi: 10.21656/1000-0887.450338
Citation: ZHANG Dahai, ZHANG Shuai, LIU Shuoshuo, HOU Xiaohai, JIANG Yaoxin. Study on Vibration and Power Stability of Tandem Double PTC Cylinders Under Different Perturbations[J]. Applied Mathematics and Mechanics, 2026, 47(2): 203-218. doi: 10.21656/1000-0887.450338

不同干扰下串列双PTC圆柱的振动及功率稳定性研究

doi: 10.21656/1000-0887.450338
基金项目: 

山东省自然科学基金 ZR2023ME036

详细信息
    通讯作者:

    章大海(1978—),男,副教授,博士(通信作者. E-mail: dhzhang@upc.edu.cn)

  • 中图分类号: O3575; TV131.2

Study on Vibration and Power Stability of Tandem Double PTC Cylinders Under Different Perturbations

  • 摘要: 发展海洋能符合国家的“双碳”战略目标,大规模利用VIVACE提取海流能时需要多振子协同组合发电,但多振子的干扰效应会形成比较紊乱的流场,造成VIVACE振动响应不稳定. 为此,提出刚性连接结构以解决多振子流致振动造成的干扰. 利用RANS方法和Spalart-Allmaras湍流模型,结合动网格和UDF技术,模拟分离式串列双PTC圆柱和刚性连接双PTC圆柱在L=1.5DL=2.5DL=3.5D三种间距比下的流致振动响应、振动稳定性及瞬时输出功率稳定性. 结果表明,间距比增加会使得刚性连接时振动幅值稳定性减小,与分离式相比较,在三种间距比下刚性连接均可以改善振动稳定性和瞬时输出功率稳定性,但改善效果随着间距比增加而减弱;引入净阻尼系数衡量分离式串列双PTC圆柱和刚性连接串列双PTC圆柱振动过程中的系统能量变化,发现不稳定的净阻尼系数会导致系统能量的不稳定最终形成振动响应的不稳定.
  • 图  1  系统物理模型

    Figure  1.  The physical model for the system

    图  2  计算区域模型

    Figure  2.  The calculation domain model

    图  3  计算域网格及PTC圆柱近壁面网格

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Calculation domain meshes and PTC cylindrical near-wall meshes

    图  4  串列PTC圆柱振幅比

    Figure  4.  The tandem PTC cylindrical amplitude ratio

    图  5  不同间距比下不同连接方式振幅响应

    Figure  5.  Amplitude responses of different connection methods at different spacing ratios

    图  6  不同间距比下不同连接方式频率响应

    Figure  6.  Frequency responses of different connection methods at different spacing ratios

    图  7  不同间距比下不同连接方式的平均功率

    Figure  7.  The average powers of different connection methods at different spacing ratios

    图  8  分离结构不同间距比的瞬时功率(Ur=16)

    Figure  8.  Instantaneous powers with different spacing ratios of the separation structure (Ur=16)

    图  9  刚性连接不同间距比的瞬时功率(Ur=14)

    Figure  9.  Instantaneous powers with different spacing ratios under rigid connections (Ur=14)

    图  10  不同间距比下不同连接方式的瞬时功率稳定性

    Figure  10.  Instantaneous power stabilities of different connection methods at different spacing ratios

    图  11  分离结构PTC圆柱不同时刻尾涡(L=1.5D, Ur=12)

    Figure  11.  Tail vortices of separation PTC cylinders at different moments (L=1.5D, Ur=12)

    图  12  刚性连接串列双圆柱不同时刻尾涡(L=1.5D, Ur=12)

    Figure  12.  Tail vortices of rigid connection PTC cylinders at different moments (L=1.5D, Ur=12)

    图  13  分离式振子振动过程中的净阻尼系数(Ur=5)

    Figure  13.  Net damping coefficients of the separated type during vibration (Ur=5)

    图  14  上游PTC圆柱与下游PTC圆柱净阻尼系数(Ur=18, L=1.5D)

    Figure  14.  Net damping coefficients of upstream PTC cylinder and downstream PTC cylinders (Ur=18, L=1.5D)

    图  15  刚性连接振动过程中的净阻尼系数

    Figure  15.  Net damping coefficients of the rigid connection during vibration

    图  16  分离式连接和刚性连接的净阻尼系数(Ur=18, L=1.5D)

    Figure  16.  Net damping coefficients of the separated and rigid connections (Ur=18, L=1.5D)

    表  1  VIVACE结构参数

    Table  1.   VIVACE structural parameters

    parameter value
    cylindrical diameter/mm 88.9
    vibration mass/kg 7.286
    cylinder length/m 0.914
    generation damping/(N·s/m) 13.97
    structural damping/(N·s/m) 3.49
    vibration stiffness/(N/m) 600
    natural frequency/Hz 1.093 5
    water density/(kg/m3) 999.729
    kinematic viscosity/(N·s/m) 0.001 004
    dynamic viscosity 9.940E-7
    turbulence intensity/% 0.095
    下载: 导出CSV
  • [1] BERNITSAS M M, RAGHAVAN K. Fluid motion energy converter: US7493759B2[P]. 2009-02-24.
    [2] 丁林. 被动湍流控制下多柱体流致振动研究[D]. 重庆: 重庆大学, 2013.

    DING Lin. Research on flow induced motion of multiple circular cylinder with passive turbulence control[D]. Chongqing: Chongqing University, 2013. (in Chinese)
    [3] 朱红钧, 刘文丽, 高岳. 固定-铰接约束柔性管的涡激振动实验研究[J]. 应用数学和力学, 2023, 44(2): 141-151. doi: 10.21656/1000-0887.430320

    ZHU Hongjun, LIU Wenli, GAO Yue. Experimental study on the vortex-induced vibration of fixed-hinged flexible risers[J]. Applied Mathematics and Mechanics, 2023, 44(2): 141-151. (in Chinese) doi: 10.21656/1000-0887.430320
    [4] FARSI M, SHARIATZADEH M J, BIJARCHI M A, et al. Low-speed wind energy harvesting from a vibrating cylinder and an obstacle cylinder by flow-induced vibration effect[J]. International Journal of Environmental Science and Technology, 2022, 19(3): 1261-1272. doi: 10.1007/s13762-021-03241-1
    [5] CHEN Z L, ALAM M M, QIN B, et al. Energy harvesting from and vibration response of different diameter cylinders[J]. Applied Energy, 2020, 278: 115737. doi: 10.1016/j.apenergy.2020.115737
    [6] SUN H, MA C H, KIM E S, et al. Flow-induced vibration of tandem circular cylinders with selective roughness: effect of spacing, damping and stiffness[J]. European Journal of Mechanics-B/Fluids, 2019, 74: 219-241. doi: 10.1016/j.euromechflu.2018.10.024
    [7] 罗竹梅, 张立翔. 基于流固双向耦合的圆柱体涡激振动模拟[J]. 昆明理工大学学报(自然科学版), 2013, 38(3): 107-112.

    LUO Zhumei, ZHANG Lixiang. Numerical simulation of vortex-induced vibration of cylinder based on two-way fluid-structure coupling[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2013, 38(3): 107-112. (in Chinese)
    [8] ZHANG B S, MAO Z Y, SONG B W, et al. Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation[J]. Ocean Engineering, 2018, 165: 55-68. doi: 10.1016/j.oceaneng.2018.07.042
    [9] SUN H, BERNITSAS M M, TURKOL M. Adaptive harnessing damping in hydrokinetic energy conversion by two rough tandem-cylinders using flow-induced vibrations[J]. Renewable Energy, 2020, 149: 828-860. doi: 10.1016/j.renene.2019.12.076
    [10] ASSI G R S, BEARMAN P W, MENEGHINI J R. On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism[J]. Journal of Fluid Mechanics, 2010, 661: 365-401. doi: 10.1017/S0022112010003095
    [11] 谭潇玲, 涂佳黄, 雷平, 等. 剪切来流下串列三圆柱横向振动响应机理研究[J]. 振动与冲击, 2021, 40(20): 89-99.

    TAN Xiaoling, TU Jiahuang, LEI Ping, et al. The influence mechanism of crossflow vibration response of three tandem cylinders in shear flow[J]. Journal of Vibration and Shock, 2021, 40(20): 89-99. (in Chinese)
    [12] 赵伟文, 万德成. 用DES分离涡方法数值模拟串列双圆柱绕流问题[J]. 应用数学和力学, 2016, 37(12): 1272-1281. doi: 10.21656/1000-0887.370546

    ZHAO Weiwen, WAN Decheng. Detached-eddy simulation of flow past tandem cylinders[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1272-1281. (in Chinese) doi: 10.21656/1000-0887.370546
    [13] XU W H, JI C N, SUN H, et al. Flow-induced vibration of two elastically mounted tandem cylinders in cross-flow at subcritical Reynolds numbers[J]. Ocean Engineering, 2019, 173: 375-387. doi: 10.1016/j.oceaneng.2019.01.016
    [14] ARMIN M, KHORASANCHI M, DAY S. Wake interference of two identical oscillating cylinders in tandem: an experimental study[J]. Ocean Engineering, 2018, 166: 311-323. doi: 10.1016/j.oceaneng.2018.08.012
    [15] 李怀军, 孙海. 高雷诺数下串列粗糙三圆柱的流致振动试验研究[J]. 振动与冲击, 2024, 43(6): 280-287.

    LI Huaijun, SUN Hai. Experimental investigation on the flow-induced vibration of three tandem roughness cylinders in high Reynolds number flow[J]. Journal of Vibration and Shock, 2024, 43(6): 280-287. (in Chinese)
    [16] CHANG C C, BERNITSAS M M. Hydrokinetic energy harnessing using the VIVACE converter with passive turbulence control[C]//Volume 5: Ocean Space Utilization; Ocean Renewable Energy. Rotterdam, The Netherlands. ASMEDC, 2011: 899-908.
    [17] DING W J, SUN H, XU W H, et al. Experimental and computational investigation of interactive flow induced oscillations of two tandem rough cylinders at 3×104Re ≤ 1.2×105[J]. Ocean Engineering, 2021, 223: 108641. doi: 10.1016/j.oceaneng.2021.108641
    [18] DING L, ZHANG L, WU C M, et al. Numerical study on the effect of tandem spacing on flow-induced motions of two cylinders with passive turbulence control[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(2): 021801. doi: 10.1115/1.4034760
    [19] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]// 30th Aerospace Sciences Meeting and Exhibit. NY, USA. AIAA, 1992.
    [20] ZHANG D H, SUN H, WANG W H, et al. Rigid cylinder with asymmetric roughness in flow induced vibrations[J]. Ocean Engineering, 2018, 150: 363-376. doi: 10.1016/j.oceaneng.2018.01.005
    [21] 唐善然, 陈文礼, 李惠. 斜拉索风雨激振的数值模拟研究[J]. 工程力学, 2012, 29(3): 124-132.

    TANG Shanran, CHEN Wenli, LI Hui. Investigation on rain-wind-induced vibration of stay cables based on numerical simulations[J]. Engineering Mechanics, 2012, 29(3): 124-132. (in Chinese)
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-24
  • 修回日期:  2025-03-09
  • 刊出日期:  2026-02-01

目录

    /

    返回文章
    返回