A Fully Discrete Discontinuous Galerkin Method for Fractional Convection Equations
-
摘要: 分数阶导数因其在描述自然界中的反常现象方面具有优势而受到广泛关注. 研究了一类含时间Caputo-Hadamard分数阶导数的对流方程的数值解法, 采用L1方法近似时间导数, 运用间断Galerkin有限元方法对空间方向进行逼近, 进而得到该方程的全离散数值格式. 借助离散的Gronwall不等式分析了格式的稳定性、收敛性及误差估计, 最后通过数值例子验证了理论分析的正确性.
-
关键词:
- 分数阶对流 /
- 间断Galerkin方法 /
- 全离散 /
- 稳定性 /
- 收敛性
Abstract: Fractional derivatives have received extensive attention due to their advantages in describing anomalous phenomena in nature. The numerical solutions to a class of convection equations containing temporal Caputo-Hadamard fractional derivatives were studied. The L1 method was adopted to approximate the time derivative, and the discontinuous Galerkin finite element method was used to approximate the spatial direction, thus to obtain the fully discrete numerical scheme for the equations. With the discrete Gronwall inequality, the stability, convergence and error estimates of the scheme were analyzed. Finally, numerical examples verify the correctness of the proposed theoretical method.-
Key words:
- fractional convection /
- discontinuous Galerkin method /
- fully discrete /
- stability /
- convergence
-
表 1 时间方向上的L2误差和收敛阶(例1), r=1
Table 1. L2 errors and convergence orders in the time direction (example 1), r=1
M α=0.4 α=0.6 α=0.8 error order error order error order L2-norm 512 9.73E-3 * 2.77E-3 * 5.76E-4 * 1 024 7.58E-3 0.36 1.83E-3 0.60 3.32E-4 0.79 2 048 5.85E-3 0.38 1.21E-3 0.60 1.91E-4 0.80 4096 4.48E-3 0.39 7.99E-4 0.60 1.10E-4 0.80 L∞-norm 512 1.37E-2 0.34 3.92E-3 0.59 8.14E-4 0.79 1 024 1.07E-2 0.36 2.59E-3 0.60 4.70E-4 0.79 2 048 8.26E-3 0.37 1.71E-3 0.60 2.70E-4 0.80 4 096 6.33E-3 0.38 1.13E-3 0.60 1.55E-4 0.80 theory 0.40 0.60 0.80 表 2 时间方向上的L2误差和收敛阶(例1), r=(2-α)/(2α)
Table 2. L2 errors and convergence orders in the time direction (example 1), r=(2-α)/(2α)
M α=0.4 α=0.6 α=0.8 error order error order error order L2-norm 64 4.48E-3 * 6.23E-3 * 5.55E-3 * 128 2.60E-3 0.79 3.90E-3 0.68 3.90E-3 0.51 256 1.50E-3 0.80 2.41E-3 0.69 2.66E-3 0.55 512 8.60E-4 0.80 1.49E-3 0.70 1.79E-3 0.57 L∞-norm 64 6.34E-3 * 8.79E-3 * 7.84E-3 * 128 3.67E-3 0.79 5.51E-3 0.68 5.51E-3 0.51 256 2.12E-3 0.80 3.41E-3 0.69 3.76E-3 0.55 512 1.22E-3 0.80 2.11E-3 0.70 2.53E-3 0.57 theory 0.80 0.70 0.60 表 3 时间方向上的L2误差和收敛阶(例1), r=(2-α)/α
Table 3. L2 errors and convergence orders in the time direction (example 1), r=(2-α)/α
M α=0.4 α=0.6 α=0.8 error order error order error order L2-norm 64 4.17E-4 * 7.28E-4 * 9.85E-4 * 128 1.43E-4 1.55 2.88E-4 1.34 4.75E-4 1.05 256 4.85E-5 1.56 1.12E-4 1.36 2.23E-4 1.09 512 1.64E-5 1.56 4.30E-5 1.38 1.03E-4 1.11 L∞-norm 64 5.97E-4 * 1.03E-3 * 1.40E-3 * 128 2.02E-4 1.57 4.07E-4 1.34 6.73E-4 1.05 256 6.85E-5 1.56 1.58E-4 1.36 3.17E-4 1.09 512 2.32E-5 1.56 6.09E-5 1.38 1.46E-4 1.11 theory 1.60 1.40 1.20 表 4 空间方向上的L2误差和收敛阶(例1), M=500, k=1
Table 4. L2 errors and convergence orders in the spatial direction (example 1), M=500, k=1
M α=0.4 α=0.6 α=0.8 error order error order error order L2-norm 4 1.03E-1 * 9.97E-2 * 9.73E-2 * 8 2.54E-2 2.02 2.44E-2 2.03 2.36E-2 2.05 16 6.24E-3 2.02 5.97E-3 2.03 5.72E-3 2.04 32 1.54E-3 2.02 1.47E-3 2.02 1.39E-3 2.04 L∞-norm 64 1.07E-1 * 1.05E-1 * 1.03E-1 * 128 3.35E-2 1.69 3.23E-2 1.70 3.13E-2 1.72 256 8.69E-3 1.95 8.34E-3 1.95 8.03E-3 1.96 512 2.18E-3 2.00 2.08E-3 2.00 1.99E-3 2.01 theory 2.00 2.00 2.00 表 5 当α→1-时鲁棒性测试,N=500, M=32
Table 5. The robustness test for α→1-, N=500, M=32
α error 0.8 0.001 903 142 890 661 0.9 0.002 505 224 877 617 0.99 0.004 017 895 756 442 0.999 0.004 298 546 559 962 -
[1] PODLUBNY I. Fractional Differential Equations[M]. New York: Academic Press, 1999: 1-198. [2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier, 2006: 69-132. [3] LI C P, CAI M. Theory and Numerical Approximations of Fractional Integrals and Derivatives[M]. Philadelphia: SIAM, 2019: 1-71. [4] DENISOV S I, KANTZ H. Continuous-time random walk theory of superslow diffusion[J]. EPL (Europhysics Letters), 2010, 92(3): 30001. doi: 10.1209/0295-5075/92/30001 [5] LOMNITZ C. Application of the logarithmic creep law to stress wave attenuation in the solid earth[J]. Journal of Geophysical Research, 1962, 67(1): 365-368. doi: 10.1029/JZ067i001p00365 [6] GARRA R, MAINARDI F, SPADA G. A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus[J]. Chaos, Solitons & Fractals, 2017, 102: 333-338. [7] LI C P, LI Z Q. Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation[J]. Journal of Nonlinear Science, 2021, 31(2): 31. doi: 10.1007/s00332-021-09691-8 [8] WANG Z. Non-uniform L1/DG method for one-dimensional time-fractional convection equation[J]. Computational Methods for Differential Equations, 2021, 9(4): 1069-1082. [9] LI C, WANG Z. Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution[J]. Mathematics and Computers in Simulation, 2021, 182: 838-857. doi: 10.1016/j.matcom.2020.12.007 [10] 王震. Caputo型对流方程的间断伽辽金有限元方法[J]. 重庆理工大学学报(自然科学版), 2022, 36(9): 253-259.WANG Zhen. Discontinuous Galerkin finite element method for the Caputo-type convection equation[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(9): 253-259. (in Chinese) [11] LI C P, LI D X. The variational physics-informed neural networks for time-fractional nonlinear conservation laws[J]. IFAC-PapersOnLine, 2024, 58(12): 472-477. doi: 10.1016/j.ifacol.2024.08.236 [12] STYNES M, O'RIORDAN E, GRACIA J L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation[J]. SIAM Journal on Numerical Analysis, 2017, 55(2): 1057-1079. doi: 10.1137/16M1082329 [13] LIAO H L, LI D F, ZHANG J W. Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations[J]. SIAM Journal on Numerical Analysis, 2018, 56(2): 1112-1133. doi: 10.1137/17M1131829 [14] WANG Z, SUN L H. The Allen-Cahn equation with a time Caputo-Hadamard derivative: mathematical and numerical analysis[J]. Communications in Analysis and Mechanics, 2023, 15(4): 611-637. doi: 10.3934/cam.2023031 [15] WANG Z, SUN L H. A numerical approximation for the Caputo-Hadamard derivative and its application in time-fractional variable-coefficient diffusion equation[J]. Discrete and Continuous Dynamical Systems-Series S, 2024, 17(8): 2679-2705. doi: 10.3934/dcdss.2024027 [16] CIARLET P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland Pub. Co., 1978: 174-286. [17] 汪精英, 翟术英. 分数阶Cahn-Hilliard方程的高效数值算法[J]. 应用数学和力学, 2021, 42(8): 832-840. doi: 10.21656/1000-0887.420008WANG Jingying, ZHAI Shuying. An efficient numerical algorithm for fractional Cahn-Hilliard equations[J]. Applied Mathematics and Mechanics, 2021, 42(8): 832-840. (in Chinese) doi: 10.21656/1000-0887.420008 [18] 刘家惠, 邵林馨, 黄健飞. 带Caputo导数的变分数阶随机微分方程的EuIer-Maruyama方法[J]. 应用数学和力学, 2023, 44(6): 731-743. doi: 10.21656/1000-0887.430250 LIU Jiahui, SHAO Linxin, HUANG Jianfei. An Euler-maruyama method for variable fractional stochastic differential equations with caputo derivatives[J]. Applied Mathematics and Mechanics, 2023, 44(6): 731-743. (in Chinese) doi: 10.21656/1000-0887.430250 -
下载:
渝公网安备50010802005915号