An Analytical Method for Vertical Additional Stresses and Displacements in 3-Layer Ground Under Rectangular Uniform Load
-
摘要: 对于实践中常见的三层地基的竖向附加应力与位移计算问题,现有理论方法尚不能进行合理且可便捷操作的解析. 为了在理论计算方面解决此问题,基于弹性理论建立了三层地基的层状弹性半空间分析模型,通过中间变量转换,运用变量状态空间理论与Hankel积分变换方法,推导出了矩形均布垂直荷载下三层地基竖向附加应力与位移的紧凑解析解,并提出了避免数值溢出的高效率数值计算实现方法,包括地表沉降和地基内部竖向附加应力与位移的高精度数值积分边界处理方法. 实例分析结果表明:该文方法与FLAC3D数值模拟结果吻合良好,与规范建议的有限深度地基模型的计算误差约为8%;对于各层差异明显的三层地基,当地表下一层土体厚度大于荷载宽度时,现行规范的均质地基方法计算的地基中附加应力误差较大;对由上而下依次为中-软-硬土层的地基,在土体深度与荷载宽度之比≤0.75时,三层地基理论的计算值小于传统均质地基方法的结果,反之,传统方法可能低估了地基中的附加应力. 该文方法揭示出上两层土体不同厚度时,地基的中上部区域的附加应力差异较为显著,而增大最上面一层土体厚度,可明显提高地基中沿深度的应力扩散效率.Abstract: The existing theoretical methods cannot reasonably and practicably analyze vertical additional stresses and displacements in a 3-layer ground, which is common in actual engineering. To solve this theoretical calculation problem, a semi-infinite layered elastic model for the 3-layer ground was established based on the elastic theory. According to the proposed transformation of intermedium variables, the state space theory and the Hankel integral transformation, the closed-form analytical solutions to the vertical additional stresses and displacements under a rectangular uniform load on the 3-layer ground, were deduced. Also, an effective numerical calculation tactic was provided to carry out the proposed method to avoid the possible numerical overflow. Meanwhile, an approach for the integral upper bound to obtain the high-accuracy numerical results of the settlements at the ground surface and the vertical stresses and displacements in the ground was put forward. Analytical results of some examples show that, the proposed solutions agree well with the numerical results via FLAC3D, and the error between the proposed model and the finitely deep foundation model based on China codes is about 8%. If the 1st layer thickness of the multi-layer ground with greatly different 3 layers is larger than the load width, the error of the additional stresses calculated according to the current codes will be very high. As for the ground sequentially including medium, soft and hard layers from the surface, the proposed solutions are obviously less than those obtained with the traditional method for homogeneous ground within the range where the ratio of the soil depth to the load width is not more than 0.75. If the soil depth is over the range, the traditional method will underestimate the additional stress in the ground. Moreover, the proposed method reveals that the thicknesses of the upper 2 layers have a great influence on the additional stresses in the upper and middle areas of the ground, and the stress dispersion efficiency along the depth evidently increase with the thickness of the 1st layer under the surface.
-
表 1 中-软-硬土层组合地基上两层不同厚度时的附加应力系数
Table 1. Coefficients of vertical additional stresses in a medium-soft-hard soil stratum under different thicknesses of the upper 2 layers
z/B homoge nization solution h1=20 m, h2=10 m h1=10 m, h2=20 m h1=h2=15 m h1=h2=20 m h1=h2=10 m k relative deviation/% k relative deviation/% k relative deviation/% k relative deviation/% k relative deviation/% 0.5 0.818 0.807 -1.4 0.769 -6.0 0.773 -5.5 0.783 -4.3 0.833 1.8 1.0 0.549 0.574 4.6 0.615 12.0 0.591 7.7 0.518 -5.6 0.675 22.9 1.5 0.395 0.485 22.9 0.496 25.6 0.488 23.5 0.444 12.3 0.480 21.6 2.0 0.303 0.378 24.7 0.375 23.9 0.376 24.0 0.378 24.7 0.359 18.4 2.5 0.244 0.301 23.2 0.295 20.9 0.298 22.1 0.307 25.7 0.280 14.9 3.0 0.202 0.245 21.3 0.239 18.4 0.243 20.2 0.253 25.4 0.227 12.4 -
[1] 建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国计划出版社, 2012.Code for design of building foundation: GB 50007—2011[S]. Beijing: China Planning Press, 2012. (in Chinese) [2] 铁路部第三勘测设计院. 铁路桥涵地基和基础设计规范: TB 10002.5—2005[S]. 北京: 中国铁道出版社, 2005.The Third Survey and Design Institute of the Ministry of Railways. Code for design on subsiul and foundation of railway bridge and culvert: TB 10002.5—2005[S]. Beijing: China Railway Publishing House, 2005. (in Chinese) [3] BIOT M A. Effect of certain discontinuities on the pressure distribution in a loaded soil[J]. Physics, 1935, 6(12): 367-375. doi: 10.1063/1.1745279 [4] BURMISTER D M, PALMER L A, BARBER E S, et al. The theory of stress and displacements in layered systems and applications to the design of airport runways[J]. Highway Research Board Proceedings, 1944, 23: 126-148. [5] BUFLER H. Theory of elasticity of a multilayered medium[J]. Journal of Elasticity, 1971, 1(2): 125-143. doi: 10.1007/BF00046464 [6] BAHAR L Y. Transfer matrix approach to layered systems[J]. Journal of the Engineering Mechanics Division, 1972, 98(5): 1159-1172. doi: 10.1061/JMCEA3.0001660 [7] 王凯. N层弹性连续体系在圆形均布垂直荷载作用下的力学计算[J]. 土木工程学报, 1982, 15(2): 65-76.WANG Kai. Stress and displacement analyses of a N-layer elastic-continuous system under vertical load uniformly distributed on a circular area[J]. China Civil Engineering Journal, 1982, 15(2): 65-76. (in Chinese) [8] 王凯. 层状弹性体系力学及其应用[J]. 力学与实践, 2021, 43(4): 555-566.WANG Kai. Layered elastic system mechanics and its applications[J]. Mechanics in Engineering, 2021, 43(4): 555-566. (in Chinese) [9] 钟阳, 王哲人, 郭大智. 求解多层弹性半空间轴对称问题的传递矩阵法[J]. 土木工程学报, 1992, 25(6): 37-43.ZHONG Yang, WANG Zheren, GUO Dazhi. The transfer matrix method for solving axisymmetrical problems in mutilayered elastic half space[J]. China Civil Engineering Journal, 1992, 25(6): 37-43. (in Chinese) [10] 钟阳, 王哲人, 郭大智, 等. 求解多层弹性半空间非轴对称问题的传递矩阵法[J]. 土木工程学报, 1995, 28(1): 66-72.ZHONG Yang, WANG Zheren, GUO Dazhi, et al. Transfer matrix method for solving non axisymmetrical problems in multilayered elastic half space[J]. China Civil Engineering Journal, 1995, 28(1): 66-72. (in Chinese) [11] 钟阳, 张永山. 求解多层弹性半空间轴对称问题的精确刚度矩阵法[J]. 力学季刊, 2003, 24(3): 395-400.ZHONG Yang, ZHANG Yongshan. Explicit solution for axisymmetrical multilayered elastic half space problems by exact stiffness matrix method[J]. Chinese Quarterly of Mechanics, 2003, 24(3): 395-400. (in Chinese) [12] 罗世毅. 水平层状地基中附加应力与沉降计算分析[D]. 西安: 长安大学, 2003.LUO Shiyi. The calculation of additional stress and settlement for the foundation of multilayered horizional soil[D]. Xi'an: Chang'an University, 2003. (in Chinese) [13] 陈光敬, 赵锡宏, 于立. 成层横观各向同性体非轴对称问题的解析解[J]. 同济大学学报(自然科学版), 1998, 26(5): 522-527.CHEN Guangjing, ZHAO Xihong, YU Li. Transferring matrix method for solutions of non-axisymmetric load applied to layered cross-anisotropic elastic body[J]. Journal of Tongji University (Natural Science), 1998, 26(5): 522-527. (in Chinese) [14] 王有凯, 牛婷婷. 直角坐标系下层状地基力学计算中的传递矩阵技术[J]. 工程力学, 2007, 24(S1): 83-86.WANG Youkai, NIU Tingting. The method of transferring matrix for multi-layered half space elastic problems in rectangular coordinate system[J]. Engineering Mechanics, 2007, 24(S1): 83-86. (in Chinese) [15] 艾智勇, 杨轲舒. 横观各向同性层状地基上弹性矩形板的参数研究[J]. 岩土工程学报, 2016, 38(8): 1442-1446.AI Zhiyong, YANG Keshu. Parametric study on an elastic rectangle plate on transversely isotropic multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1442-1446. (in Chinese) [16] 陈亮, 余飞. 互层地基附加应力计算深度及影响因素[J]. 土木工程与管理学报, 2017, 34(1): 67-71.CHEN Liang, YU Fei. Calculating depth of additional stress and its influencing factors in multi-layered foundation[J]. Journal of Civil Engineering and Management, 2017, 34(1): 67-71. (in Chinese) [17] 胡文锋, 冯金胜, 孟侨, 等. 一般边界条件下层合圆柱壳轴对称弯曲的精确解[J]. 应用数学和力学, 2025, 46(7): 867-881. doi: 10.21656/1000-0887.450139HU Wenfeng, FENG Jinsheng, MENG Qiao, et al. Exact solutions for axisymmetric bending of laminated cylindrical shells with general boundary conditions[J]. Applied Mathematics and Mechanics, 2025, 46(7): 867-881. (in Chinese) doi: 10.21656/1000-0887.450139 [18] 郭大智, 冯德成. 层状弹性体系力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2001.GUO Dazhi, FENG Decheng. Mechanics of Layered Elastic Systems[M]. Harbin: Harbin Institute of Technology Press, 2001. (in Chinese) -
下载:
渝公网安备50010802005915号