• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gauss白噪声激励下时滞悬架系统的随机分岔

兰盼 魏周超

兰盼, 魏周超. Gauss白噪声激励下时滞悬架系统的随机分岔[J]. 应用数学和力学, 2025, 46(12): 1527-1539. doi: 10.21656/1000-0887.450343
引用本文: 兰盼, 魏周超. Gauss白噪声激励下时滞悬架系统的随机分岔[J]. 应用数学和力学, 2025, 46(12): 1527-1539. doi: 10.21656/1000-0887.450343
LAN Pan, WEI Zhouchao. Random Bifurcation of Time-Delay Suspension Systems Under Gaussian White Noise Excitation[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1527-1539. doi: 10.21656/1000-0887.450343
Citation: LAN Pan, WEI Zhouchao. Random Bifurcation of Time-Delay Suspension Systems Under Gaussian White Noise Excitation[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1527-1539. doi: 10.21656/1000-0887.450343

Gauss白噪声激励下时滞悬架系统的随机分岔

doi: 10.21656/1000-0887.450343
基金项目: 

国家自然科学基金 12172340

国家自然科学基金 12411530068

轨道交通运载系统全国重点实验室开放课题 RVL2501

详细信息
    作者简介:

    兰盼(2000—),女,硕士生(E-mail: lanpan1128@163.com)

    通讯作者:

    魏周超(1984—),男,教授,博士,博士生导师(通讯作者. E-mail: weizhouchao@163.com)

  • 中图分类号: O32

Random Bifurcation of Time-Delay Suspension Systems Under Gaussian White Noise Excitation

  • 摘要: 研究了具有随机激励和时滞反馈控制的悬架系统. 首先,分析系统发生Hopf分岔的条件. 其次,利用中心流形理论和最大Lyapunov指数,研究系统的局部稳定性和随机D分岔条件,并通过奇异边界理论探讨了系统的全局稳定性. 最后,通过数值模拟揭示了噪声强度和时滞反馈系数对系统动力学的影响,并验证了理论结果.
  • 图  1  噪声强度δ=0.376,u1/u3=1.96<2的分岔行为

    Figure  1.  The bifurcation behavior for noise intensity δ=0.376, u1/u3=1.96 < 2

    图  2  噪声强度δ=0.386,u1/u3=2.00的分岔行为

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The bifurcation behavior for noise intensity δ=0.386, u1/u3=2.00

    图  3  噪声强度δ=0.48,u1/u3=2.31>2的分岔行为

    Figure  3.  The bifurcation behavior for noise intensity δ=0.48, u1/u3=2.31>2

    图  4  噪声强度δ=0.386,g2=0.104 5,u1/u3=1.87<2的分岔行为

    Figure  4.  The bifurcation behavior for noise intensity δ=0.386, g2=0.104 5, u1/u3=1.87 < 2

    图  5  噪声强度δ=0.386,g2=0.104 539,u1/u3=2.00的分岔行为

    Figure  5.  The bifurcation behavior for noise intensity δ=0.386, g2=0.104 539, u1/u3=2.00

    图  6  噪声强度δ=0.386,g2=0.104 6,u1/u3=2.21>2的分岔行为

    Figure  6.  The bifurcation behavior for noise intensity δ=0.386, g2=0.104 6, u1/u3=2.21>2

  • [1] MARGOLLS D L. The response of active and semi-active suspensions to realistic feedback signals[J]. Vehicle System Dynamics, 1982, 11(5/6): 267-282.
    [2] TRUE H. On the theory of nonlinear dynamics and its applications in vehicle systems dynamics[J]. Vehicle System Dynamics, 1999, 31(5/6): 393-421.
    [3] ZHU Q, ISHITOBI M. Chaos and bifurcations in a nonlinear vehicle model[J]. Journal of Sound and Vibration, 2004, 275(3): 1136-1146.
    [4] WU J, ZHOU H, LIU Z, et al. Ride comfort optimization via speed planning and preview semi-active suspension control for autonomous vehicles on uneven roads[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8343-8355. doi: 10.1109/TVT.2020.2996681
    [5] ZHOU S, SONG G, SUN M, et al. Nonlinear dynamic analysis of a quarter vehicle system with external periodic excitation[J]. International Journal of Non-Linear Mechanics, 2016, 84: 82-93. doi: 10.1016/j.ijnonlinmec.2016.04.014
    [6] BOUAZARA M, RICHARD M J, RAKHEJA S. Safety and comfort analysis of a 3-D vehicle model with optimal non-linear active seat suspension[J]. Journal of Terramechanics, 2006, 43(2): 97-118. doi: 10.1016/j.jterra.2004.10.003
    [7] 徐明, 黄庆生, 李刚. 车辆半主动悬架智能控制方法研究现状[J]. 机床与液压, 2021, 49(1): 169-174.

    XU Ming, HUANG Qingsheng, LI Gang. Research status of intelligent control method for vehicle semi-active suspension[J]. Machine Tool & Hydraulics, 2021, 49(1): 169-174. (in Chinese)
    [8] BOROWIEC M, LITAK G. Transition to chaos and escape phenomenon in two-degrees-of-freedom oscillator with a kinematic excitation[J]. Nonlinear Dynamics, 2012, 70(2): 1125-1133. doi: 10.1007/s11071-012-0518-8
    [9] ZHANG H, LIU J, WANG E, et al. Nonlinear dynamic analysis of a skyhook-based semi-active suspension system with magneto-rheological damper[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10446-10456. doi: 10.1109/TVT.2018.2870325
    [10] ULLAH M Z, MALLAWI F, BALEANU D, et al. A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system[J]. Chaos, Solitons & Fractals, 2020, 132: 109530.
    [11] TUWA P R N, MOLLA T, NOUBISSIE S, et al. Analysis of a quarter car suspension based on a Kelvin-Voigt viscoelastic model with fractional-order derivative[J]. International Journal of Non-Linear Mechanics, 2021, 137: 103818. doi: 10.1016/j.ijnonlinmec.2021.103818
    [12] ZHANG H, LING L, ZHAI W. Adaptive nonlinear damping control of active secondary suspension for hunting stability of high-speed trains[J]. Applied Mathematical Modelling, 2024, 133: 79-107. doi: 10.1016/j.apm.2024.05.015
    [13] 彭冲, 李连. 汽车电磁主动悬架的研究现状与发展趋势[J]. 重型汽车, 2018(2): 19-21.

    PENG Chong, LI Lian. Research status and development trend of automobile electromagnetic active suspension[J]. Heavy Truck, 2018(2): 19-21. (in Chinese)
    [14] 崔新斌, 傅景礼. 汽车电磁悬架系统的Noether对称性及其应用[J]. 应用数学和力学, 2017, 38(12): 1331-1341. doi: 10.21656/1000-0887.380060

    CUI Xinbin, FU Jingli. Noether symmetry of automotive electromagnetic suspension systems and its application[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1331-1341. (in Chinese) doi: 10.21656/1000-0887.380060
    [15] ZHANG C, XIAO J. Chaotic behavior and feedback control of magnetorheological suspension system with fractional-order derivative[J]. Journal of Computational and Nonlinear Dynamics, 2018, 13(2): 021007. doi: 10.1115/1.4037931
    [16] DEHGHANI R, KHANLO H M, FAKHRAEI J. Active chaos control of a heavy articulated vehicle equipped with magnetorheological dampers[J]. Nonlinear Dynamics, 2017, 87(3): 1923-1942. doi: 10.1007/s11071-016-3163-9
    [17] ZHANG H, CHENG K, WANG E, et al. Nonlinear behaviors of a half-car magnetorheo logical suspension system under harmonic road excitation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8592-8600. doi: 10.1109/TVT.2023.3244586
    [18] ZHOU L, WANG M. Dynamic characterisation of a nonlinear electromagnetic force model under simple harmonic excitation[J]. Chaos, Solitons & Fractals, 2024, 180: 114450.
    [19] LITAK G, BOROWIEC M, FRISWELL M I, et al. Chaotic response of a quarter car model forced by a road profile with a stochastic component[J]. Chaos, Solitons & Fractals, 2009, 39(5): 2448-2456.
    [20] LITAK G, BOROWIEC M, FRISWELL M I, et al. Chaotic vibration of a quarter-car model excited by the road surface profile[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(7): 1373-1383. doi: 10.1016/j.cnsns.2007.01.003
    [21] CHEN E, XING W, WANG M, et al. Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation[J]. Chaos, Solitons & Fractals, 2021, 152: 111300.
    [22] ZHAO H, FU C, ZHU W, et al. Dynamic characteristics and sensitivity analysis of a nonlinear vehicle suspension system with stochastic uncertainties[J]. Nonlinear Dynamics, 2024, 112(24): 21605-21626. doi: 10.1007/s11071-024-10159-z
    [23] MOLLA T, DURAISAMY P, RAJAGOPAL K, et al. Exploring nonlinearity in quarter car models with an experimental approach to formulating fractional order form and its dynamic analysis[J]. Scientific Reports, 2024, 14: 12074. doi: 10.1038/s41598-024-63139-z
    [24] NAIK R D, SINGRU P M. Resonance, stability and chaotic vibration of a quarter-car vehicle model with time-delay feedback[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8): 3397-3410. doi: 10.1016/j.cnsns.2010.11.006
    [25] KOUMENE TAFFO G I, SIEWESIEWE M, TCHAWOUA C. Stability switches and bifurcation in a two-degrees-of-freedom nonlinear quarter-car with small time-delayed feedback control[J]. Chaos, Solitons & Fractals, 2016, 87: 226-239.
    [26] WANG W, SONG Y. Analytical computation method for steady-state stochastic response of a time-delay nonlinear automotive suspension system[J]. Mechanical Systems and Signal Processing, 2019, 131: 434-445. doi: 10.1016/j.ymssp.2019.05.061
    [27] WATANABE M, PRASAD A, SAKAI K. Delayed feedback active suspension control for chaos in quarter car model with jumping nonlinearity[J]. Chaos, Solitons & Fractals, 2024, 186: 115236.
    [28] YANG Y G, CEN M H. Stochastic dynamics of an electromagnetic energy harvesting suspension with time-delayed feedback and fractional damping[J]. International Journal of Non-Linear Mechanics, 2024, 165: 104766. doi: 10.1016/j.ijnonlinmec.2024.104766
    [29] FOFANA M S. Asymptotic stability of a stochastic delay equation[J]. Probabilistic Engineering Mechanics, 2002, 17(4): 385-392. doi: 10.1016/S0266-8920(02)00035-8
    [30] ZHANG J, NAN M, WEI L, et al. Bifurcation analysis of a wind turbine generator drive system with stochastic excitation under both displacement and velocity delayed feedback[J]. International Journal of Bifurcation and Chaos, 2023, 33(7): 2350079. doi: 10.1142/S0218127423500797
    [31] WANG M, WEI Z, WANG J, et al. Stochastic bifurcation and chaos study for nonlinear ship rolling motion with random excitation and delayed feedback controls[J]. Physica D: Nonlinear Phenomena, 2024, 462: 134147. doi: 10.1016/j.physd.2024.134147
    [32] LI Y, WEI Z, KAPITANIAK T, et al. Stochastic bifurcation and chaos analysis for a class of ships rolling motion under non-smooth perturbation and random excitation[J]. Ocean Engineering, 2022, 266: 112859. doi: 10.1016/j.oceaneng.2022.112859
    [33] ARNOLD L, JONES C, MISCHAIKOW K, et al. Random Dynamical Systems[M]. Berlin, Heidelberg: Springer, 1995.
    [34] 朱位秋. 非线性随机动力学与控制: Hamilton理论体系框架[M]. 北京: 科学出版社, 2003.

    ZHU Weiqiu. Nonlinear Stochastic Dynamics and Control: Framework of Hamilton Theory System[M]. Beijing: Science Press, 2003. (in Chinese)
    [35] ZHU W Q, HUANG Z L. Stochastic Hopf bifurcation of quasi-nonintegrable-Hamiltonian systems[J]. International Journal of Non-Linear Mechanics, 1999, 34(3): 437-447. doi: 10.1016/S0020-7462(98)00026-2
  • 加载中
图(6)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  27
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-04-22
  • 刊出日期:  2025-12-01

目录

    /

    返回文章
    返回