| [1] |
MARGOLLS D L. The response of active and semi-active suspensions to realistic feedback signals[J]. Vehicle System Dynamics, 1982, 11(5/6): 267-282.
|
| [2] |
TRUE H. On the theory of nonlinear dynamics and its applications in vehicle systems dynamics[J]. Vehicle System Dynamics, 1999, 31(5/6): 393-421.
|
| [3] |
ZHU Q, ISHITOBI M. Chaos and bifurcations in a nonlinear vehicle model[J]. Journal of Sound and Vibration, 2004, 275(3): 1136-1146.
|
| [4] |
WU J, ZHOU H, LIU Z, et al. Ride comfort optimization via speed planning and preview semi-active suspension control for autonomous vehicles on uneven roads[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8343-8355. doi: 10.1109/TVT.2020.2996681
|
| [5] |
ZHOU S, SONG G, SUN M, et al. Nonlinear dynamic analysis of a quarter vehicle system with external periodic excitation[J]. International Journal of Non-Linear Mechanics, 2016, 84: 82-93. doi: 10.1016/j.ijnonlinmec.2016.04.014
|
| [6] |
BOUAZARA M, RICHARD M J, RAKHEJA S. Safety and comfort analysis of a 3-D vehicle model with optimal non-linear active seat suspension[J]. Journal of Terramechanics, 2006, 43(2): 97-118. doi: 10.1016/j.jterra.2004.10.003
|
| [7] |
徐明, 黄庆生, 李刚. 车辆半主动悬架智能控制方法研究现状[J]. 机床与液压, 2021, 49(1): 169-174.XU Ming, HUANG Qingsheng, LI Gang. Research status of intelligent control method for vehicle semi-active suspension[J]. Machine Tool & Hydraulics, 2021, 49(1): 169-174. (in Chinese)
|
| [8] |
BOROWIEC M, LITAK G. Transition to chaos and escape phenomenon in two-degrees-of-freedom oscillator with a kinematic excitation[J]. Nonlinear Dynamics, 2012, 70(2): 1125-1133. doi: 10.1007/s11071-012-0518-8
|
| [9] |
ZHANG H, LIU J, WANG E, et al. Nonlinear dynamic analysis of a skyhook-based semi-active suspension system with magneto-rheological damper[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10446-10456. doi: 10.1109/TVT.2018.2870325
|
| [10] |
ULLAH M Z, MALLAWI F, BALEANU D, et al. A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system[J]. Chaos, Solitons & Fractals, 2020, 132: 109530.
|
| [11] |
TUWA P R N, MOLLA T, NOUBISSIE S, et al. Analysis of a quarter car suspension based on a Kelvin-Voigt viscoelastic model with fractional-order derivative[J]. International Journal of Non-Linear Mechanics, 2021, 137: 103818. doi: 10.1016/j.ijnonlinmec.2021.103818
|
| [12] |
ZHANG H, LING L, ZHAI W. Adaptive nonlinear damping control of active secondary suspension for hunting stability of high-speed trains[J]. Applied Mathematical Modelling, 2024, 133: 79-107. doi: 10.1016/j.apm.2024.05.015
|
| [13] |
彭冲, 李连. 汽车电磁主动悬架的研究现状与发展趋势[J]. 重型汽车, 2018(2): 19-21.PENG Chong, LI Lian. Research status and development trend of automobile electromagnetic active suspension[J]. Heavy Truck, 2018(2): 19-21. (in Chinese)
|
| [14] |
崔新斌, 傅景礼. 汽车电磁悬架系统的Noether对称性及其应用[J]. 应用数学和力学, 2017, 38(12): 1331-1341. doi: 10.21656/1000-0887.380060CUI Xinbin, FU Jingli. Noether symmetry of automotive electromagnetic suspension systems and its application[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1331-1341. (in Chinese) doi: 10.21656/1000-0887.380060
|
| [15] |
ZHANG C, XIAO J. Chaotic behavior and feedback control of magnetorheological suspension system with fractional-order derivative[J]. Journal of Computational and Nonlinear Dynamics, 2018, 13(2): 021007. doi: 10.1115/1.4037931
|
| [16] |
DEHGHANI R, KHANLO H M, FAKHRAEI J. Active chaos control of a heavy articulated vehicle equipped with magnetorheological dampers[J]. Nonlinear Dynamics, 2017, 87(3): 1923-1942. doi: 10.1007/s11071-016-3163-9
|
| [17] |
ZHANG H, CHENG K, WANG E, et al. Nonlinear behaviors of a half-car magnetorheo logical suspension system under harmonic road excitation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8592-8600. doi: 10.1109/TVT.2023.3244586
|
| [18] |
ZHOU L, WANG M. Dynamic characterisation of a nonlinear electromagnetic force model under simple harmonic excitation[J]. Chaos, Solitons & Fractals, 2024, 180: 114450.
|
| [19] |
LITAK G, BOROWIEC M, FRISWELL M I, et al. Chaotic response of a quarter car model forced by a road profile with a stochastic component[J]. Chaos, Solitons & Fractals, 2009, 39(5): 2448-2456.
|
| [20] |
LITAK G, BOROWIEC M, FRISWELL M I, et al. Chaotic vibration of a quarter-car model excited by the road surface profile[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(7): 1373-1383. doi: 10.1016/j.cnsns.2007.01.003
|
| [21] |
CHEN E, XING W, WANG M, et al. Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation[J]. Chaos, Solitons & Fractals, 2021, 152: 111300.
|
| [22] |
ZHAO H, FU C, ZHU W, et al. Dynamic characteristics and sensitivity analysis of a nonlinear vehicle suspension system with stochastic uncertainties[J]. Nonlinear Dynamics, 2024, 112(24): 21605-21626. doi: 10.1007/s11071-024-10159-z
|
| [23] |
MOLLA T, DURAISAMY P, RAJAGOPAL K, et al. Exploring nonlinearity in quarter car models with an experimental approach to formulating fractional order form and its dynamic analysis[J]. Scientific Reports, 2024, 14: 12074. doi: 10.1038/s41598-024-63139-z
|
| [24] |
NAIK R D, SINGRU P M. Resonance, stability and chaotic vibration of a quarter-car vehicle model with time-delay feedback[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8): 3397-3410. doi: 10.1016/j.cnsns.2010.11.006
|
| [25] |
KOUMENE TAFFO G I, SIEWESIEWE M, TCHAWOUA C. Stability switches and bifurcation in a two-degrees-of-freedom nonlinear quarter-car with small time-delayed feedback control[J]. Chaos, Solitons & Fractals, 2016, 87: 226-239.
|
| [26] |
WANG W, SONG Y. Analytical computation method for steady-state stochastic response of a time-delay nonlinear automotive suspension system[J]. Mechanical Systems and Signal Processing, 2019, 131: 434-445. doi: 10.1016/j.ymssp.2019.05.061
|
| [27] |
WATANABE M, PRASAD A, SAKAI K. Delayed feedback active suspension control for chaos in quarter car model with jumping nonlinearity[J]. Chaos, Solitons & Fractals, 2024, 186: 115236.
|
| [28] |
YANG Y G, CEN M H. Stochastic dynamics of an electromagnetic energy harvesting suspension with time-delayed feedback and fractional damping[J]. International Journal of Non-Linear Mechanics, 2024, 165: 104766. doi: 10.1016/j.ijnonlinmec.2024.104766
|
| [29] |
FOFANA M S. Asymptotic stability of a stochastic delay equation[J]. Probabilistic Engineering Mechanics, 2002, 17(4): 385-392. doi: 10.1016/S0266-8920(02)00035-8
|
| [30] |
ZHANG J, NAN M, WEI L, et al. Bifurcation analysis of a wind turbine generator drive system with stochastic excitation under both displacement and velocity delayed feedback[J]. International Journal of Bifurcation and Chaos, 2023, 33(7): 2350079. doi: 10.1142/S0218127423500797
|
| [31] |
WANG M, WEI Z, WANG J, et al. Stochastic bifurcation and chaos study for nonlinear ship rolling motion with random excitation and delayed feedback controls[J]. Physica D: Nonlinear Phenomena, 2024, 462: 134147. doi: 10.1016/j.physd.2024.134147
|
| [32] |
LI Y, WEI Z, KAPITANIAK T, et al. Stochastic bifurcation and chaos analysis for a class of ships rolling motion under non-smooth perturbation and random excitation[J]. Ocean Engineering, 2022, 266: 112859. doi: 10.1016/j.oceaneng.2022.112859
|
| [33] |
ARNOLD L, JONES C, MISCHAIKOW K, et al. Random Dynamical Systems[M]. Berlin, Heidelberg: Springer, 1995.
|
| [34] |
朱位秋. 非线性随机动力学与控制: Hamilton理论体系框架[M]. 北京: 科学出版社, 2003.ZHU Weiqiu. Nonlinear Stochastic Dynamics and Control: Framework of Hamilton Theory System[M]. Beijing: Science Press, 2003. (in Chinese)
|
| [35] |
ZHU W Q, HUANG Z L. Stochastic Hopf bifurcation of quasi-nonintegrable-Hamiltonian systems[J]. International Journal of Non-Linear Mechanics, 1999, 34(3): 437-447. doi: 10.1016/S0020-7462(98)00026-2
|