• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解最优控制问题的一类单调时间离散格式

向清清 陈浩

向清清, 陈浩. 求解最优控制问题的一类单调时间离散格式[J]. 应用数学和力学, 2026, 47(2): 230-242. doi: 10.21656/1000-0887.460020
引用本文: 向清清, 陈浩. 求解最优控制问题的一类单调时间离散格式[J]. 应用数学和力学, 2026, 47(2): 230-242. doi: 10.21656/1000-0887.460020
XIANG Qingqing, CHEN Hao. A Monotonic Time-Discretized Scheme for Optimal Control Problems[J]. Applied Mathematics and Mechanics, 2026, 47(2): 230-242. doi: 10.21656/1000-0887.460020
Citation: XIANG Qingqing, CHEN Hao. A Monotonic Time-Discretized Scheme for Optimal Control Problems[J]. Applied Mathematics and Mechanics, 2026, 47(2): 230-242. doi: 10.21656/1000-0887.460020

求解最优控制问题的一类单调时间离散格式

doi: 10.21656/1000-0887.460020
基金项目: 

重庆市自然科学基金 CSTB2025NSCQ-GPX1015

详细信息
    作者简介:

    向清清(2000—),女,硕士生(E-mail: 2530025502@qq.com)

    通讯作者:

    陈浩(1986—),男,教授,博士,硕士生导师(通信作者. E-mail: hch@cqnu.edu.cn)

  • 中图分类号: O241.81

A Monotonic Time-Discretized Scheme for Optimal Control Problems

  • 摘要: 近期, Breitenbach和Borzì构造了一类求解常微分方程最优控制问题的序列二次Hamilton(sequential quadratic Hamiltonian, SQH)方法. 他们证明了该迭代方法在连续时间情形下的单调收敛性. 然而, 该迭代方法在离散时间情形下的收敛性质尚未被解决. 该文构造了一类中点时间离散格式,并证明了其能保持SQH迭代的单调收敛性. 数值实验验证了该方法的有效性及收敛性.
  • 图  1  y1-y2平面上的运动轨迹

    Figure  1.  Motion paths in the y1-y2 plane

    图  2  目标函数J的收敛过程

    Figure  2.  The convergence history of J along the SQH iterations

    图  3  伴随变量

    Figure  3.  The adjoint variables

    图  4  最优控制

    Figure  4.  The optimal control

    图  5  目标泛函J的收敛过程

    Figure  5.  The convergence history of J along the SQH iterations

    表  1  NCG算法、SQH算法与Adam算法比较

    Table  1.   The comparison between the NCG algorithm, the SQH algorithm and the Adam algorithm

    J NCG SQH Adam
    CPU time/s iter CPU time/s iter CPU time/s iter
    0.78 12.548 5 1 394 10.989 7 620 21.016 1 1 908
    1.00 6.263 4 700 3.276 0 186 12.883 5 1 418
    2.00 0.549 1 56 0.304 7 32 4.275 4 467
    3.00 0.318 4 32 0.224 5 23 2.351 6 252
    4.00 0.232 5 22 0.185 5 19 1.617 1 182
    5.00 0.188 8 16 0.165 5 16 1.379 2 145
    下载: 导出CSV
  • [1] 郑明亮. 机械多体系统动力学非线性最优控制问题的Noether理论[J]. 应用数学和力学, 2018, 39(7): 776-784. doi: 10.21656/1000-0887.380295

    ZHENG Mingliang. The Noether theorem for nonlinear optimal control problems of mechanical multibody system dynamics[J]. Applied Mathematics and Mechanics, 2018, 39(7): 776-784. (in Chinese) doi: 10.21656/1000-0887.380295
    [2] HULL D G. Optimal Control Theory for Applications[M]. New York: Springer, 2003.
    [3] BRYSON A E, HO Y C, SIOURIS G M. Appliedoptimal control: optimization, estimation, and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(6): 366-367. doi: 10.1109/TSMC.1979.4310229
    [4] KAMIEN M I, SCHWARTZ N L. Dynamic Optimization: the Calculus of Variations and Optimal Control in Economics and Management[M]. North Holland Inc, 1998.
    [5] 程国采. 航天飞行器最优控制理论与方法[M]. 北京: 国防工业出版社, 1999.

    CHENG Guocai. Spacecraft Optimal Control Theory and Method[M]. Beijing: National Defense Industry Press, 1999. (in Chinese)
    [6] MOHAMMADI S, HEJAZI S. Using particle swarm optimization and genetic algorithms for optimal control of non-linear fractional-order chaotic system of cancer cells[J]. Mathematics and Computers in Simulation, 2022, 206: 538-560.
    [7] 王昕炜, 彭海军, 钟万勰. 具有潜伏期时滞的时变SEIR模型的最优疫苗接种策略[J]. 应用数学和力学, 2019, 40(7): 701-712. doi: 10.21656/1000-0887.400048

    WANG Xinwei, PENG Haijun, ZHONG Wanxie. Optimal vaccination strategies for a time-varying SEIR epidemic model with latent delay[J]. Applied Mathematics and Mechanics, 2019, 40(7): 701-712. (in Chinese) doi: 10.21656/1000-0887.400048
    [8] PONTRYAGIN L S. The Mathematical Theory of Optimal Processes[M]. New York: Interscience Publishers, 1962.
    [9] BELLMAN R E, DREYFUS S E. Applied Dynamic Programming[M]. Princeton: Princeton University Press, 1962.
    [10] 陈学松, 刘富春. 一类非线性动态系统基于强化学习的最优控制[J]. 控制与决策, 2013, 28(12): 1889-1893.

    CHEN Xuesong, LIU Fuchun. Optimal control for a class of nonlinear dynamic systems based on reinforcement learning[J]. Control and Decision, 2013, 28(12): 1889-1893. (in Chinese)
    [11] APEL T, FLAIG T G. Crank: Nicolson schemes for optimal control problems with evolution equations[J]. SIAM Journal on Numerical Analysis, 2012, 50(3): 1484-1512. doi: 10.1137/100819333
    [12] LIU X, FRANK J. Symplectic Runge-Kutta discretization of a regularized forward-backward sweep iteration for optimal control problems[J]. Journal of Computational and Applied Mathematics, 2021, 383: 113133. doi: 10.1016/j.cam.2020.113133
    [13] ZHANG Z, CHEN X. A global convergent semi-smooth Newton method for semilinear elliptic optimal control problem[J]. Computers and Mathematics With Applications, 2022, 120: 13.
    [14] ZHANG Z, CHEN X. A conjugate gradient method for distributed optimal control problems with nonhomogeneous Helmholtz equation[J]. Applied Mathematics and Computation, 2021, 402: 126019. doi: 10.1016/j.amc.2021.126019
    [15] BORZÌ A. The Sequential Quadratic Hamiltonian Method: Solving Optimal Control Problems[M]. CRC Press, 2023.
    [16] BREITENBACH T, BORZÌ A. A sequential quadratic Hamiltonian scheme for solving non-smooth quantum control problems with sparsity[J]. Journal of Computational and Applied Mathematics, 2020, 369: 112583. doi: 10.1016/j.cam.2019.112583
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-06
  • 修回日期:  2025-11-07
  • 刊出日期:  2026-02-01

目录

    /

    返回文章
    返回