• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类糖尿病模型的动力学行为及敏感性分析

李畅通 田佳 冯孝周 刘云涛

李畅通, 田佳, 冯孝周, 刘云涛. 一类糖尿病模型的动力学行为及敏感性分析[J]. 应用数学和力学, 2026, 47(2): 243-256. doi: 10.21656/1000-0887.460021
引用本文: 李畅通, 田佳, 冯孝周, 刘云涛. 一类糖尿病模型的动力学行为及敏感性分析[J]. 应用数学和力学, 2026, 47(2): 243-256. doi: 10.21656/1000-0887.460021
LI Changtong, TIAN Jia, FENG Xiaozhou, LIU Yuntao. Dynamic Behavior and Sensitivity Analysis on a Class of Diabetes Models[J]. Applied Mathematics and Mechanics, 2026, 47(2): 243-256. doi: 10.21656/1000-0887.460021
Citation: LI Changtong, TIAN Jia, FENG Xiaozhou, LIU Yuntao. Dynamic Behavior and Sensitivity Analysis on a Class of Diabetes Models[J]. Applied Mathematics and Mechanics, 2026, 47(2): 243-256. doi: 10.21656/1000-0887.460021

一类糖尿病模型的动力学行为及敏感性分析

doi: 10.21656/1000-0887.460021
基金项目: 

陕西省哲学社会科学研究专项 2025YB0201

陕西省外国专家服务计划项目 2024WZ-YBXM-01

国家自然科学基金 12326417

国家外专项目 G2023041033L

详细信息
    作者简介:

    田佳(2003—),女,硕士生(E-mail: 15229924801@163.com)

    冯孝周(1979—),男,教授,博士,博士生导师(E-mail: flxzfxz8@163.com)

    刘云涛(2000—),男,硕士生(E-mail: liyto22@163.com)

    通讯作者:

    李畅通(1982—),男,副教授,博士(通信作者. E-mail: lctnihao@163.com)

  • 中图分类号: O175.1

Dynamic Behavior and Sensitivity Analysis on a Class of Diabetes Models

  • 摘要: 基于糖皮质激素诱导胰岛素抵抗,建立了一类新的胰岛素、血糖和糖皮质激素的糖尿病模型,探究了糖尿病的复杂发病机制. 首先,运用线性化方法、极限系统理论以及Dulac判据,证明了平衡点的局部和全局稳定性. 其次,选取了影响糖尿病浓度的关键参数,通过直接微分法,开展了关键参数对正平衡点的敏感性分析,探究了关键参数如何影响胰岛素和糖皮质激素的分泌与作用,进而帮助调控血糖水平的波动. 最后,运用MATLAB进行数值模拟,不仅验证了理论分析的正确性,还模拟了不同干预治疗下血糖浓度的变化趋势,发现选取合适的关键参数对血糖浓度的控制至关重要,为糖尿病临床治疗方案的制定提供了理论依据.
  • 图  1  糖尿病模型系统图

    Figure  1.  System diagram of the diabetes model

    图  2  当参数τ0<1时的数值模拟结果

    Figure  2.  Numerical simulation results with parameter τ0 < 1

    图  3  当参数τ0<1时,不同初始值的数值模拟图

    Figure  3.  Numerical simulation plots of different initial values for parameter τ0 < 1

    图  4  当参数τ0>1时的数值模拟结果

    Figure  4.  Numerical simulation results with parameter τ0>1

    图  5  当参数τ0>1时,不同初始值的数值模拟图

    Figure  5.  Numerical simulation plots of different initial values for parameter τ0>1

    图  6  参数σ1, m, c, ωI*, G*, H*之间的影响关系

    Figure  6.  The relationships between parameters σ1, m, c, ω and I*, G*, H*

  • [1] ATKINSON M A, EISENBARTH G S, MICHELS A W. Type 1 diabetes[J]. The Lancet, 2014, 383(9911): 69-82. doi: 10.1016/S0140-6736(13)60591-7
    [2] TAYLOR R. Type 2 diabetes: etiology and reversibility[J]. Diabetes Care, 2013, 36(4): 1047-1055. doi: 10.2337/dc12-1805
    [3] BERGET C, MESSER L H, FORLENZA G P. A clinical overview of insulin pump therapy for the management of diabetes: past, present, and future of intensive therapy[J]. Diabetes Spectrum, 2019, 32(3): 194-204. doi: 10.2337/ds18-0091
    [4] WANG Xia, ZHANG Ying, SONG Xinyu. Mathematical model for diabetes mellitus with impulsive injections of glucose-insulin[J]. Chinese Quarterly Journal of Mathematics, 2017, 32(2): 118-133
    [5] HUANG M, LI J, SONG X, et al. Modeling impulsive injections of insulin: towards artificial pancreas[J]. SIAM Journal on Applied Mathematics, 2012, 72(5): 1524-1548. doi: 10.1137/110860306
    [6] MA M, LI J. Dynamics of a glucose-insulin model[J]. Journal of Biological Dynamics, 2022, 16(1): 733-745. doi: 10.1080/17513758.2022.2146769
    [7] SAVATOROVA V, TALONOV A. Differential equations for modeling pathways leading to diabetes onset[J]. CODEE Journal, 2024, 18(1): 1-31.
    [8] AL ALI H, BOUTAYEB W, BOUTAYEB A, et al. A mathematical model on the effect of growth hormone on glucose homeostasis[J]. ARIMA Joural, 2019, 30: 31-42.
    [9] KIM S H, PARK M J. Effects of growth hormone on glucose metabolism and insulin resistance in human[J]. Annals of Pediatric Endocrinology & Metabolism, 2017, 22(3): 145-152.
    [10] AL ALI H, DANESHKHAH A, BOUTAYEB A, et al. Exploring dynamical properties of a type 1 diabetes model using sensitivity approaches[J]. Mathematics and Computers in Simulation, 2022, 201: 324-342. doi: 10.1016/j.matcom.2022.05.008
    [11] 傅金波, 陈兰荪. 基于两斑块和人口流动的SIR传染病模型的稳定性[J]. 应用数学和力学, 2017, 38(4): 486-494. doi: 10.21656/1000-0887.370087

    FU Jinbo, CHEN Lansun. Stability of an SIR epidemic model with 2 patches and population movement[J]. Applied Mathematics and Mechanics, 2017, 38(4): 486-494. (in Chinese) doi: 10.21656/1000-0887.370087
    [12] 贾西北, 蔺小林, 李建全, 等. 基于成熟阶段密度制约的同类相食模型的动力学分析[J]. 应用数学和力学, 2023, 44(3): 355-366. doi: 10.21656/1000-0887.430120

    JIA Xibei, LIN Xiaolin, LI Jianquan, et al. Dynamics analysis of cannibalistic model with density dependence in mature stage[J]. Applied Mathematics and Mechanics, 2023, 44(3): 355-366. (in Chinese) doi: 10.21656/1000-0887.430120
    [13] AAKASH M, GUNASUNDARI C, SABARINATHAN S, et al. Mathematical insights into the SEIQRD model with Allee and fear dynamics in the context of COVID-19[J]. Partial Differential Equations in Applied Mathematics, 2024, 11: 100756. doi: 10.1016/j.padiff.2024.100756
    [14] CHITNIS N, HYMAN J M, CUSHING J M. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model[J]. Bulletin of Mathematical Biology, 2008, 70(5): 1272-1296. doi: 10.1007/s11538-008-9299-0
  • 加载中
图(6)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  14
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-06
  • 修回日期:  2025-05-12
  • 刊出日期:  2026-02-01

目录

    /

    返回文章
    返回