A Semi-Analytical Method for Peak Response Analysis of Bridge Stochastic Vibration Under Seismic Excitation
edited-by
edited-by
(Contributed by ZHAO Yan, M.AMM Editorial Board)-
摘要: 提出了一种随机地震激励下线性结构首次穿越破坏的极值响应半解析分析方法. 基于多模态正交分解策略实现时空变量的有效解耦,将结构物理应力响应转化到模态空间的高效求解. 借助虚拟激励法推导了地震谱作用下的模态响应谱矩解析表达式,结合首次穿越破坏机制的响应峰值概率密度函数,构建了振动峰值响应的高精度快速计算模型. 以典型大跨斜拉桥为工程背景,对关键构件应力响应峰值进行对比分析. 数值实验结果表明:与传统方法相比,该文方法在保证计算精度的同时,计算效率提升两个数量级,为大型工程结构的抗震可靠度评估提供了有效工具.Abstract: A semi-analytical method for peak response analysis of first-passage failure of linear structures under stochastic seismic excitation was presented. Based on a multi-modal orthogonal decomposition strategy, the effective decoupling of temporal and spatial variables was achieved, to transform the structural physical stress response into the efficient modal space solution. The pseudo excitation method was employed to derive analytical expressions for modal response spectral moments under seismic spectrum excitation. Combined with the probability density function of response peaks according to the first-passage failure mechanism, a high-precision and rapid computational model for vibration peak responses was established. In the engineering case of a typical long-span cable-stayed bridge, comparative analysis of stress response peaks for critical components was conducted. Numerical results demonstrate that, compared with conventional methods, the proposed approach maintains computational accuracy while improving computational efficiency by 2 orders of magnitude, providing an effective tool for seismic reliability assessment of large-scale engineering structures.
-
Key words:
- seismic response spectrum /
- random vibration /
- pesudo excitation method /
- first passage failure
edited-byedited-by1) (我刊编委赵岩来稿) -
表 1 不同阻尼比下的计算时间
Table 1. Calculation time costs under different damping ratios
modal damping ratio ζ=0.01 ζ=0.03 ζ=0.05 calculation time 0.830 s 0.815 s 0.802 s -
[1] DONG H H, HAN Q, DU X L, et al. Review on seismic resilient bridge structures[J]. Advances in Structural Engineering, 2022, 25(7): 1565-1582. doi: 10.1177/13694332221086696 [2] XU T F, YANG J N, WANG C Q, et al. Comparative sustainability and seismic performance analysis of reinforced conventional concrete and UHPC bridge piers[J]. Journal of Cleaner Production, 2024, 467: 142959. doi: 10.1016/j.jclepro.2024.142959 [3] ZHAO R D, ZHENG K F, WEI X, et al. State-of-the-art and annual progress of bridge engineering in 2021[J]. Advances in Bridge Engineering, 2022, 3: 29. doi: 10.1186/s43251-022-00070-1 [4] DI J, FAN J H, ZHOU X H, et al. Hysteretic behavior of composite bridge columns with plastic hinge enhanced by engineered cementitious composite jacket for seismic resistance[J]. Engineering Structures, 2022, 251: 113532. doi: 10.1016/j.engstruct.2021.113532 [5] ZHANG C Y, XU J G, QIAN Y L, et al. Seismic reliability analysis of random parameter aqueduct structure under random earthquake[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107083. doi: 10.1016/j.soildyn.2021.107083 [6] FAKHARIAN K, ATTAR I H. Static and seismic numerical modeling of geosynthetic-reinforced soil segmental bridge abutments[J]. Geosynthetics International, 2007, 14(4): 228-243. doi: 10.1680/gein.2007.14.4.228 [7] OMRANI R, MOBASHER B, LIANG X, et al. Guidelines for nonlinear seismic analysis of ordinary bridges: version 2.0: 15-65A0454[R]. 2015. [8] GUPTA A K. Response Spectrum Method in Seismic Analysis and Design of Structures[M]. London: Routledge, 1990. [9] MALHOTRA P K. Normalized response spectrum of ground motion[J]. Seismological Research Letters, 2015, 86(2B): 655. [10] LU Y, LI B, XIONG F, et al. Bi-normalized Newmark-Hall spectra for seismic design and assessment[J]. Bulletin of Earthquake Engineering, 2019, 17(11): 5791-5807. doi: 10.1007/s10518-019-00712-2 [11] MITSEAS I P, BEER M. Modal decomposition method for response spectrum based analysis of nonlinear and non-classically damped systems[J]. Mechanical Systems and Signal Processing, 2019, 131: 469-485. doi: 10.1016/j.ymssp.2019.05.056 [12] OROPEZA M, FAVEZ P, LESTUZZI P. Seismic response of nonstructural components in case of nonlinear structures based on floor response spectra method[J]. Bulletin of Earthquake Engineering, 2010, 8(2): 387-400. doi: 10.1007/s10518-009-9139-0 [13] NAZAROV Y P, POZNYAK E. Response spectrum method for integrated and differential spatial seismic ground motions[J]. Soil Dynamics and Earthquake Engineering, 2018, 108: 69-78. doi: 10.1016/j.soildyn.2018.02.014 [14] CHENG Y, BAI G L, DONG Y R. Spectrum characterization of two types of long-period ground motions and seismic behavior of frame-core wall structures under multidimensional earthquake records[J]. The Structural Design of Tall and Special Buildings, 2018, 27(16): e1539. doi: 10.1002/tal.1539 [15] NAJAM F A, WARNITCHAI P. A modified response spectrum analysis procedure to determine nonlinear seismic demands of high-rise buildings with shear walls[J]. The Structural Design of Tall and Special Buildings, 2018, 27(1): e1409. doi: 10.1002/tal.1409 [16] ZUCCOLO E, ANDREOTTI G, CALVI G M. PSHA-based design spectrum: an application of the design spectrum predictive model for seismic regulation purposes[J]. Journal of Earthquake Engineering, 2023, 27(15): 4494-4511. doi: 10.1080/13632469.2023.2171162 [17] KANAI K. Observation of strong earthquake motion in matsushiro area-pt1, empirical formula of strong earthquake motions[J]. Bulletin of the Earthquake Research Institute, 1996, 44: 1269-1296. [18] CLOUGH R W, PENZIEN J, GRIFFIN D S. Dynamics of structures[J]. Journal of Applied Mechanics, 1977, 44(2): 366. [19] TAJIMI H. A statistical method of determining the maximum response of a building structure during an earthquake[C]//Proceedings of the 2 nd World Conference on Earthquake Engineering. Tokio, 1960: 781-798. [20] BAI X L, WU Z. Research on the parameter of response spectrum of Clough-Penzien model[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011. DOI: 10.1117/12.880259. [21] LIN B C, TADJBAKHSH I G, PAPAGEORGIOU A S, et al. Response of base-isolated buildings to random excitations described by the Clough-Penzien spectral model[J]. Earthquake Engineering & Structural Dynamics, 1989, 18(1): 49-62. [22] VANMARCKE E H, FENTON G A. Conditioned simulation of local fields of earthquake ground motion[J]. Structural Safety, 1991, 10(1/2/3): 247-264. [23] HARICHANDRAN R S, VANMARCKE E H. Stochastic variation of earthquake ground motion in space and time[J]. Journal of Engineering Mechanics, 1986, 112(2): 154-174. doi: 10.1061/(ASCE)0733-9399(1986)112:2(154) [24] LOH C H, YEH Y T. Spatial variation and stochastic modelling of seismic differential ground movement[J]. Earthquake Engineering & Structural Dynamics, 1988, 16(4): 583-596. [25] LOH C H. Spatial variability of seismic waves and its engineering application[J]. Structural Safety, 1991, 10(1/2/3): 95-111. [26] OLIVEIRA C S, HAO H, PENZIEN J. Ground motion modeling for multiple-input structural analysis[J]. Structural Safety, 1991, 10(1/2/3): 79-93. [27] ZHANG Z C, LIN J H, ZHANG Y H, et al. Non-stationary random vibration analysis for train-bridge systems subjected to horizontal earthquakes[J]. Engineering Structures, 2010, 32(11): 3571-3582. doi: 10.1016/j.engstruct.2010.08.001 [28] LIN J H, ZHANG Y H, ZHAO Y. Pseudo excitation method and some recent developments[J]. Procedia Engineering, 2011, 14: 2453-2458. doi: 10.1016/j.proeng.2011.07.308 [29] LIU X, ZHANG N, SUN Q K, et al. An efficient frequency domain analysis method for bridge structure-borne noise prediction under train load and its application in noise reduction[J]. Applied Acoustics, 2022, 192: 108647. doi: 10.1016/j.apacoust.2022.108647 [30] XIANG T Y, YI R, ZHU S Y, et al. Stochastic response analysis of uncertain train-bridge interaction system by stochastic pseudo excitation method[J]. Probabilistic Engineering Mechanics, 2023, 74: 103498. doi: 10.1016/j.probengmech.2023.103498 [31] LIN J H, ZHANG Y H, LI Q S, et al. Seismic spatial effects for long-span bridges, using the pseudo excitation method[J]. Engineering Structures, 2004, 26(9): 1207-1216. doi: 10.1016/j.engstruct.2004.03.019 [32] 赵雷, 刘宁国. 大跨度叠合梁斜拉桥多维多点非平稳随机地震响应分析[J]. 应用数学和力学, 2017, 38(1): 118-125. doi: 10.21656/1000-0887.370528ZHAO Lei, LIU Ningguo. Non-stationary random seismic analysis of large-span composite beam cable-stayed bridges under multi-support and multi-dimentional earthquake excitations[J]. Applied Mathematics and Mechanics, 2017, 38(1): 118-125. (in Chinese) doi: 10.21656/1000-0887.370528 [33] 史俊, 徐略勤, 鲁小罗. 设置黏滞阻尼器的纵飘斜拉桥地震响应简化分析方法[J]. 应用数学和力学, 2019, 40(12): 1335-1344. doi: 10.21656/1000-0887.400045SHI Jun, XU Lueqin, LU Xiaoluo. A simplified analysis method for seismic responses of floating-system cable-stayed bridges with viscous dampers[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1335-1344. (in Chinese) doi: 10.21656/1000-0887.400045 [34] 赵岩, 张亚辉, 林家浩. 基于虚拟激励法的大跨度桥梁非平稳随机振动分析闭合解[J]. 计算力学学报, 2024, 41(1): 202-208.ZHAO Yan, ZHANG YaHui, LIN Jiahao. Closed solution for non-stationary random vibration analysis of long-span bridge based on pseudo excitation method[J]. Chinese Journal of Computational Mechanics, 2024, 41(1): 202-208. (in Chinese) [35] DAVENPORT A G. Note on the distribution of the largest value of a random function with application to gust loading[J]. Proceedings of the Institution of Civil Engineers, 1964, 28(2): 187-196. doi: 10.1680/iicep.1964.10112 [36] VANMARCKE E H. Properties of spectral moments with applications to random vibration[J]. Journal of the Engineering Mechanics Division, 1972, 98(2): 425-446. doi: 10.1061/JMCEA3.0001593 [37] DER KIUREGHIAN A. Structural response to stationary excitation[J]. Journal of the Engineering Mechanics Division, 1980, 106(6): 1195-1213. doi: 10.1061/JMCEA3.0002659 [38] SUI G, ZHANG Y. Response spectrum method for fatigue damage assessment of mechanical systems[J]. International Journal of Fatigue, 2023, 166: 107278. doi: 10.1016/j.ijfatigue.2022.107278 [39] 赵岩, 张亚辉, 林家浩. 车辆随机振动功率谱分析的虚拟激励法概述[J]. 应用数学和力学, 2013, 34(2): 11. doi: 10.3879/j.issn.1000-0887.2013.02.001ZHAO Yan, ZHANG Yahui, LIN Jiahao. Pesudo excitation method for power spectrum analysis of vehicle random vibration[J]. Application Mathematics and Mechanics, 2013, 34(2): 11. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.02.001 [40] BRACCESI C, CIANETTI F, TOMASSINI L. An innovative modal approach for frequency domain stress recovery and fatigue damage evaluation[J]. International Journal of Fatigue, 2016, 91: 382-396. doi: 10.1016/j.ijfatigue.2016.02.028 [41] 张菊辉. 有关Kanai-Tajimi模型的统计特征分析[J]. 世界地震工程, 2007, 23(1): 156-160.ZHANG Juhui. Statistical properties analysis of Kanai-Tajimi model[J]. World Earthquake Engineering, 2007, 23(1): 156-160. (in Chinese) [42] CHEN M, LIANG X J, YANG Z W, et al. Analytical study on the random seismic responses of an asymmetrical suspension structure[J]. Buildings, 2023, 13(6): 1435. doi: 10.3390/buildings13061435 [43] MAO C Y, ZHAO Y, ZHOU X Y. Coupled critical plane-pseudo excitation method for multiaxial fatigue analysis of structures under random vibration[J]. Applied Mathematical Modelling, 2025, 138: 115789. doi: 10.1016/j.apm.2024.115789 [44] GE X G, LI C D, AZIM I, et al. Structural dynamic responses of linear structures subjected to Kanai-Tajimi excitation[J]. Structures, 2021, 34: 3958-3967. doi: 10.1016/j.istruc.2021.08.092 -
下载:
渝公网安备50010802005915号