• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震作用下桥梁随机振动峰值响应分析的半解析方法

杨柳 毛晨洋 赵岩

杨柳, 毛晨洋, 赵岩. 地震作用下桥梁随机振动峰值响应分析的半解析方法[J]. 应用数学和力学, 2025, 46(12): 1501-1514. doi: 10.21656/1000-0887.460024
引用本文: 杨柳, 毛晨洋, 赵岩. 地震作用下桥梁随机振动峰值响应分析的半解析方法[J]. 应用数学和力学, 2025, 46(12): 1501-1514. doi: 10.21656/1000-0887.460024
YANG Liu, MAO Chenyang, ZHAO Yan. A Semi-Analytical Method for Peak Response Analysis of Bridge Stochastic Vibration Under Seismic Excitation[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1501-1514. doi: 10.21656/1000-0887.460024
Citation: YANG Liu, MAO Chenyang, ZHAO Yan. A Semi-Analytical Method for Peak Response Analysis of Bridge Stochastic Vibration Under Seismic Excitation[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1501-1514. doi: 10.21656/1000-0887.460024

地震作用下桥梁随机振动峰值响应分析的半解析方法

doi: 10.21656/1000-0887.460024
(我刊编委赵岩来稿)
基金项目: 

国家自然科学基金 11772084

详细信息
    作者简介:

    杨柳(1980—),女,高级工程师(E-mail: yangliu_m@163.com)

    毛晨洋(2000—),男,博士生(E-mail: maochenyang@mail.dlut.edu.cn)

    通讯作者:

    赵岩(1974—),男,教授,博士(通讯作者. E-mail: yzhao@dlut.edu.cn)

  • 中图分类号: O324

A Semi-Analytical Method for Peak Response Analysis of Bridge Stochastic Vibration Under Seismic Excitation

(Contributed by ZHAO Yan, M.AMM Editorial Board)
  • 摘要: 提出了一种随机地震激励下线性结构首次穿越破坏的极值响应半解析分析方法. 基于多模态正交分解策略实现时空变量的有效解耦,将结构物理应力响应转化到模态空间的高效求解. 借助虚拟激励法推导了地震谱作用下的模态响应谱矩解析表达式,结合首次穿越破坏机制的响应峰值概率密度函数,构建了振动峰值响应的高精度快速计算模型. 以典型大跨斜拉桥为工程背景,对关键构件应力响应峰值进行对比分析. 数值实验结果表明:与传统方法相比,该文方法在保证计算精度的同时,计算效率提升两个数量级,为大型工程结构的抗震可靠度评估提供了有效工具.
    1)  (我刊编委赵岩来稿)
  • 图  1  大跨度斜拉桥有限元模型(单位: m)

    Figure  1.  The finite element model for a long span cable-stayed bridge (unit: m)

    图  2  斜拉桥的钢索和桥板

    Figure  2.  Cables and plates of the cable stayed bridge

    图  3  不同方法计算的桥梁截面正应力(σ+y)极值期望

    Figure  3.  Peak expectations of normal stress (σ+y) of the bridge section calculated with different methods

    图  4  不同方法计算的桥梁截面正应力(σ-y)极值期望

    Figure  4.  Peak expectations of normal stress (σ-y) of the bridge section calculated with different methods

    图  5  不同方法计算的钢索轴向应力极值期望

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  5.  Peak expectations of the cable axial stress calculated with different methods

    图  6  应力极值期望最大的单元位置

    Figure  6.  The expected maximum positions of stress peaks in elements

    图  7  不同模态截断数下的桥梁单元17截面应力极值期望

    Figure  7.  Peak stress expectations of the bridge element 17 section under different modal truncation numbers

    图  8  桥梁单元17截面的应力极值概率分布和期望

    Figure  8.  The probability distribution and expectation of stress peaks in the bridge element section 17

    图  9  不同方法计算的桥梁截面正应力(σ+y)极值标准差

    Figure  9.  Peak standard deviations of normal stress (σ+y) of the bridge section calculated with different methods

    图  10  不同方法计算的桥梁截面正应力(σ-y)极值标准差

    Figure  10.  Peak standard deviations of normal stress (σ-y) of the bridge section calculated with different methods

    图  11  不同方法计算的钢索轴向应力极值标准差

    Figure  11.  Peak standard deviations of the cable axial stress calculated with different methods

    图  12  不同方法所需计算时长

    Figure  12.  Calculation time lengths required by different methods

    图  13  不同阻尼比下的钢索单元截面轴向应力极值期望

    Figure  13.  Expectations of the peak sectional axial stress of the cable element under different damping ratios

    图  14  不同阻尼比下桥梁单元截面+y端正应力极值期望

    Figure  14.  Expected normal stress peaks at the +y end of the bridge element section under different damping ratios

    图  15  不同阻尼比下桥梁单元截面-y端正应力极值期望

    Figure  15.  Expected normal stress peaks at the -y end of the bridge element section under different damping ratios

    图  16  钢索单元轴向应力极值期望敏感度

    Figure  16.  Expected sensitivities of the peak axial stress of the cable element

    图  17  桥梁单元截面+y端正应力极值期望敏感度

    Figure  17.  Expected sensitivities of the peak normal stress at the +y end of the bridge element section

    图  18  桥梁单元截面-y端正应力极值期望敏感度

    Figure  18.  Expected sensitivities of the peak normal stress at the -y end of the bridge element section

    图  19  钢索单元轴向应力极值标准差敏感度

    Figure  19.  Sensitivities of the standard deviation of the peak axial stress of the cable element

    图  20  桥梁单元截面+y端正应力极值标准差敏感度

    Figure  20.  Sensitivities of the standard deviation of the peak normal stress at the +y end of the bridge element section

    图  21  桥梁单元截面-y端正应力极值标准差敏感度

    Figure  21.  Sensitivities of the standard deviation of the peak normal stress at the -y end of the bridge element section

    表  1  不同阻尼比下的计算时间

    Table  1.   Calculation time costs under different damping ratios

    modal damping ratio ζ=0.01 ζ=0.03 ζ=0.05
    calculation time 0.830 s 0.815 s 0.802 s
    下载: 导出CSV
  • [1] DONG H H, HAN Q, DU X L, et al. Review on seismic resilient bridge structures[J]. Advances in Structural Engineering, 2022, 25(7): 1565-1582. doi: 10.1177/13694332221086696
    [2] XU T F, YANG J N, WANG C Q, et al. Comparative sustainability and seismic performance analysis of reinforced conventional concrete and UHPC bridge piers[J]. Journal of Cleaner Production, 2024, 467: 142959. doi: 10.1016/j.jclepro.2024.142959
    [3] ZHAO R D, ZHENG K F, WEI X, et al. State-of-the-art and annual progress of bridge engineering in 2021[J]. Advances in Bridge Engineering, 2022, 3: 29. doi: 10.1186/s43251-022-00070-1
    [4] DI J, FAN J H, ZHOU X H, et al. Hysteretic behavior of composite bridge columns with plastic hinge enhanced by engineered cementitious composite jacket for seismic resistance[J]. Engineering Structures, 2022, 251: 113532. doi: 10.1016/j.engstruct.2021.113532
    [5] ZHANG C Y, XU J G, QIAN Y L, et al. Seismic reliability analysis of random parameter aqueduct structure under random earthquake[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107083. doi: 10.1016/j.soildyn.2021.107083
    [6] FAKHARIAN K, ATTAR I H. Static and seismic numerical modeling of geosynthetic-reinforced soil segmental bridge abutments[J]. Geosynthetics International, 2007, 14(4): 228-243. doi: 10.1680/gein.2007.14.4.228
    [7] OMRANI R, MOBASHER B, LIANG X, et al. Guidelines for nonlinear seismic analysis of ordinary bridges: version 2.0: 15-65A0454[R]. 2015.
    [8] GUPTA A K. Response Spectrum Method in Seismic Analysis and Design of Structures[M]. London: Routledge, 1990.
    [9] MALHOTRA P K. Normalized response spectrum of ground motion[J]. Seismological Research Letters, 2015, 86(2B): 655.
    [10] LU Y, LI B, XIONG F, et al. Bi-normalized Newmark-Hall spectra for seismic design and assessment[J]. Bulletin of Earthquake Engineering, 2019, 17(11): 5791-5807. doi: 10.1007/s10518-019-00712-2
    [11] MITSEAS I P, BEER M. Modal decomposition method for response spectrum based analysis of nonlinear and non-classically damped systems[J]. Mechanical Systems and Signal Processing, 2019, 131: 469-485. doi: 10.1016/j.ymssp.2019.05.056
    [12] OROPEZA M, FAVEZ P, LESTUZZI P. Seismic response of nonstructural components in case of nonlinear structures based on floor response spectra method[J]. Bulletin of Earthquake Engineering, 2010, 8(2): 387-400. doi: 10.1007/s10518-009-9139-0
    [13] NAZAROV Y P, POZNYAK E. Response spectrum method for integrated and differential spatial seismic ground motions[J]. Soil Dynamics and Earthquake Engineering, 2018, 108: 69-78. doi: 10.1016/j.soildyn.2018.02.014
    [14] CHENG Y, BAI G L, DONG Y R. Spectrum characterization of two types of long-period ground motions and seismic behavior of frame-core wall structures under multidimensional earthquake records[J]. The Structural Design of Tall and Special Buildings, 2018, 27(16): e1539. doi: 10.1002/tal.1539
    [15] NAJAM F A, WARNITCHAI P. A modified response spectrum analysis procedure to determine nonlinear seismic demands of high-rise buildings with shear walls[J]. The Structural Design of Tall and Special Buildings, 2018, 27(1): e1409. doi: 10.1002/tal.1409
    [16] ZUCCOLO E, ANDREOTTI G, CALVI G M. PSHA-based design spectrum: an application of the design spectrum predictive model for seismic regulation purposes[J]. Journal of Earthquake Engineering, 2023, 27(15): 4494-4511. doi: 10.1080/13632469.2023.2171162
    [17] KANAI K. Observation of strong earthquake motion in matsushiro area-pt1, empirical formula of strong earthquake motions[J]. Bulletin of the Earthquake Research Institute, 1996, 44: 1269-1296.
    [18] CLOUGH R W, PENZIEN J, GRIFFIN D S. Dynamics of structures[J]. Journal of Applied Mechanics, 1977, 44(2): 366.
    [19] TAJIMI H. A statistical method of determining the maximum response of a building structure during an earthquake[C]//Proceedings of the 2 nd World Conference on Earthquake Engineering. Tokio, 1960: 781-798.
    [20] BAI X L, WU Z. Research on the parameter of response spectrum of Clough-Penzien model[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011. DOI: 10.1117/12.880259.
    [21] LIN B C, TADJBAKHSH I G, PAPAGEORGIOU A S, et al. Response of base-isolated buildings to random excitations described by the Clough-Penzien spectral model[J]. Earthquake Engineering & Structural Dynamics, 1989, 18(1): 49-62.
    [22] VANMARCKE E H, FENTON G A. Conditioned simulation of local fields of earthquake ground motion[J]. Structural Safety, 1991, 10(1/2/3): 247-264.
    [23] HARICHANDRAN R S, VANMARCKE E H. Stochastic variation of earthquake ground motion in space and time[J]. Journal of Engineering Mechanics, 1986, 112(2): 154-174. doi: 10.1061/(ASCE)0733-9399(1986)112:2(154)
    [24] LOH C H, YEH Y T. Spatial variation and stochastic modelling of seismic differential ground movement[J]. Earthquake Engineering & Structural Dynamics, 1988, 16(4): 583-596.
    [25] LOH C H. Spatial variability of seismic waves and its engineering application[J]. Structural Safety, 1991, 10(1/2/3): 95-111.
    [26] OLIVEIRA C S, HAO H, PENZIEN J. Ground motion modeling for multiple-input structural analysis[J]. Structural Safety, 1991, 10(1/2/3): 79-93.
    [27] ZHANG Z C, LIN J H, ZHANG Y H, et al. Non-stationary random vibration analysis for train-bridge systems subjected to horizontal earthquakes[J]. Engineering Structures, 2010, 32(11): 3571-3582. doi: 10.1016/j.engstruct.2010.08.001
    [28] LIN J H, ZHANG Y H, ZHAO Y. Pseudo excitation method and some recent developments[J]. Procedia Engineering, 2011, 14: 2453-2458. doi: 10.1016/j.proeng.2011.07.308
    [29] LIU X, ZHANG N, SUN Q K, et al. An efficient frequency domain analysis method for bridge structure-borne noise prediction under train load and its application in noise reduction[J]. Applied Acoustics, 2022, 192: 108647. doi: 10.1016/j.apacoust.2022.108647
    [30] XIANG T Y, YI R, ZHU S Y, et al. Stochastic response analysis of uncertain train-bridge interaction system by stochastic pseudo excitation method[J]. Probabilistic Engineering Mechanics, 2023, 74: 103498. doi: 10.1016/j.probengmech.2023.103498
    [31] LIN J H, ZHANG Y H, LI Q S, et al. Seismic spatial effects for long-span bridges, using the pseudo excitation method[J]. Engineering Structures, 2004, 26(9): 1207-1216. doi: 10.1016/j.engstruct.2004.03.019
    [32] 赵雷, 刘宁国. 大跨度叠合梁斜拉桥多维多点非平稳随机地震响应分析[J]. 应用数学和力学, 2017, 38(1): 118-125. doi: 10.21656/1000-0887.370528

    ZHAO Lei, LIU Ningguo. Non-stationary random seismic analysis of large-span composite beam cable-stayed bridges under multi-support and multi-dimentional earthquake excitations[J]. Applied Mathematics and Mechanics, 2017, 38(1): 118-125. (in Chinese) doi: 10.21656/1000-0887.370528
    [33] 史俊, 徐略勤, 鲁小罗. 设置黏滞阻尼器的纵飘斜拉桥地震响应简化分析方法[J]. 应用数学和力学, 2019, 40(12): 1335-1344. doi: 10.21656/1000-0887.400045

    SHI Jun, XU Lueqin, LU Xiaoluo. A simplified analysis method for seismic responses of floating-system cable-stayed bridges with viscous dampers[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1335-1344. (in Chinese) doi: 10.21656/1000-0887.400045
    [34] 赵岩, 张亚辉, 林家浩. 基于虚拟激励法的大跨度桥梁非平稳随机振动分析闭合解[J]. 计算力学学报, 2024, 41(1): 202-208.

    ZHAO Yan, ZHANG YaHui, LIN Jiahao. Closed solution for non-stationary random vibration analysis of long-span bridge based on pseudo excitation method[J]. Chinese Journal of Computational Mechanics, 2024, 41(1): 202-208. (in Chinese)
    [35] DAVENPORT A G. Note on the distribution of the largest value of a random function with application to gust loading[J]. Proceedings of the Institution of Civil Engineers, 1964, 28(2): 187-196. doi: 10.1680/iicep.1964.10112
    [36] VANMARCKE E H. Properties of spectral moments with applications to random vibration[J]. Journal of the Engineering Mechanics Division, 1972, 98(2): 425-446. doi: 10.1061/JMCEA3.0001593
    [37] DER KIUREGHIAN A. Structural response to stationary excitation[J]. Journal of the Engineering Mechanics Division, 1980, 106(6): 1195-1213. doi: 10.1061/JMCEA3.0002659
    [38] SUI G, ZHANG Y. Response spectrum method for fatigue damage assessment of mechanical systems[J]. International Journal of Fatigue, 2023, 166: 107278. doi: 10.1016/j.ijfatigue.2022.107278
    [39] 赵岩, 张亚辉, 林家浩. 车辆随机振动功率谱分析的虚拟激励法概述[J]. 应用数学和力学, 2013, 34(2): 11. doi: 10.3879/j.issn.1000-0887.2013.02.001

    ZHAO Yan, ZHANG Yahui, LIN Jiahao. Pesudo excitation method for power spectrum analysis of vehicle random vibration[J]. Application Mathematics and Mechanics, 2013, 34(2): 11. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.02.001
    [40] BRACCESI C, CIANETTI F, TOMASSINI L. An innovative modal approach for frequency domain stress recovery and fatigue damage evaluation[J]. International Journal of Fatigue, 2016, 91: 382-396. doi: 10.1016/j.ijfatigue.2016.02.028
    [41] 张菊辉. 有关Kanai-Tajimi模型的统计特征分析[J]. 世界地震工程, 2007, 23(1): 156-160.

    ZHANG Juhui. Statistical properties analysis of Kanai-Tajimi model[J]. World Earthquake Engineering, 2007, 23(1): 156-160. (in Chinese)
    [42] CHEN M, LIANG X J, YANG Z W, et al. Analytical study on the random seismic responses of an asymmetrical suspension structure[J]. Buildings, 2023, 13(6): 1435. doi: 10.3390/buildings13061435
    [43] MAO C Y, ZHAO Y, ZHOU X Y. Coupled critical plane-pseudo excitation method for multiaxial fatigue analysis of structures under random vibration[J]. Applied Mathematical Modelling, 2025, 138: 115789. doi: 10.1016/j.apm.2024.115789
    [44] GE X G, LI C D, AZIM I, et al. Structural dynamic responses of linear structures subjected to Kanai-Tajimi excitation[J]. Structures, 2021, 34: 3958-3967. doi: 10.1016/j.istruc.2021.08.092
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  38
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-13
  • 修回日期:  2025-03-31
  • 刊出日期:  2025-12-01

目录

    /

    返回文章
    返回