• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局域共振编码超表面的低频超宽带水声扩散隐身

朱家辉 李辰洋 时磊 周红涛 王艳锋

朱家辉, 李辰洋, 时磊, 周红涛, 王艳锋. 基于局域共振编码超表面的低频超宽带水声扩散隐身[J]. 应用数学和力学, 2026, 47(2): 123-135. doi: 10.21656/1000-0887.460058
引用本文: 朱家辉, 李辰洋, 时磊, 周红涛, 王艳锋. 基于局域共振编码超表面的低频超宽带水声扩散隐身[J]. 应用数学和力学, 2026, 47(2): 123-135. doi: 10.21656/1000-0887.460058
ZHU Jiahui, LI Chenyang, SHI Lei, ZHOU Hongtao, WANG Yanfeng. Low-Frequency Ultra-Wideband Underwater Acoustic Diffusion Stealth Based on Locally Resonant Encoded Metasurface[J]. Applied Mathematics and Mechanics, 2026, 47(2): 123-135. doi: 10.21656/1000-0887.460058
Citation: ZHU Jiahui, LI Chenyang, SHI Lei, ZHOU Hongtao, WANG Yanfeng. Low-Frequency Ultra-Wideband Underwater Acoustic Diffusion Stealth Based on Locally Resonant Encoded Metasurface[J]. Applied Mathematics and Mechanics, 2026, 47(2): 123-135. doi: 10.21656/1000-0887.460058

基于局域共振编码超表面的低频超宽带水声扩散隐身

doi: 10.21656/1000-0887.460058
(我刊青年编委王艳锋来稿)
基金项目: 

国家自然科学基金 12021002

国家资助博士后研究人员计划 GZB20240526

详细信息
    作者简介:

    朱家辉(1999—),男,硕士生(E-mail: jiahuizhu@tju.edu.cn)

    李辰洋(2000—),男,博士生(E-mail: chenyang_li@tju.edu.cn)

    时磊(1997—),男,博士生(E-mail: shilei10@tju.edu.cn)

    通讯作者:

    周红涛(1998—),男,博士(通信作者. E-mail: zhouhongtao@tju.edu.cn)

    王艳锋(1987—),男,教授,博士,博士生导师(通信作者. E-mail: wangyanfeng@tju.edu.cn)

  • 中图分类号: O422

Low-Frequency Ultra-Wideband Underwater Acoustic Diffusion Stealth Based on Locally Resonant Encoded Metasurface

(Contributed by WANG Yanfeng, M.AMM Youth Editorial Board)
  • 摘要: 水声隐身对提升水下设备的生存与工作能力意义重大. 该文提出了一种基于局域共振编码超表面的水下低频超宽带声扩散隐身方法. 首先,建立了局域共振超表面单元的声振耦合等效模型,揭示了倒“T”分形结构调制水下反射声波相位的力学机理,并基于遗传算法对宽频编码单元进行了协同优化设计. 进一步,依据编码调控理论,优化了宽频范围内具有良好扩散性能的超表面编码序列. 最后,针对该超表面开展了数值模拟和试验测试. 结果表明:具有倒“T”分形结构的超表面编码单元,在深亚波长尺度展现出良好的超宽频调相性能;编码超表面可在300~1 500 Hz的低宽频范围内实现水下扩散隐身;试验与仿真结果基本一致. 该工作为水下低频超宽带的声学隐身提供了新的途径.
    1)  (我刊青年编委王艳锋来稿)
  • 图  1  局域共振单元的几何构型及其声振耦合等效模型

    Figure  1.  The geometric configuration of local resonance elements and the acoustic-vibration coupling equivalent model

    图  2  2-bit编码单元的优化

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  2 Optimization of the 2-bit encoding element

    图  3  超表面单元和编码序列设计

    Figure  3.  The element and encoding sequence design of the metasurface

    图  4  垂直入射编码超表面的模拟结果

    Figure  4.  Simulation results of the encoded metasurface under normal incidence

    图  5  超表面的归一化扩散系数

    Figure  5.  The normalized diffusion coefficient of the metasurface

    图  6  超表面试验测试

    Figure  6.  The experimental test of the metasurface

    图  7  参考平板、超表面样品的试验和模拟结果

    Figure  7.  The experimental and simulated results of the reference plate and the metasurface sample

    表  1  2-bit宽频单元表面的零阶法向位移D1,反射相位半解析解φana和模拟解φsim

    Table  1.   Zero-order normal displacements of the surface of the 2-bit broadband element, semi-analytical solutions of the reflection phase, and simulated solutions

    frequency/Hz coding element
    “00” “01” “10” “11”
    300 D1/(10-10 m) 0.318+7.036i -3.392+2.565i -1.498+0.334i 2.343+6.159i
    φana/(2π) 0 0.309 0.445 0.898
    φsim/(2π) 0 0.308 0.445 0.899
    600 D1/(10-10 m) 1.413+2.816i -0.848+3.307i -1.507+0.848i 1.370+0.654i
    φana/(2π) 0 0.229 0.486 0.790
    φsim/(2π) 0 0.228 0.485 0.790
    900 D1/(10-10 m) 0.983+0.531i 0.741+2.087i -0.946+1.872i -0.866+0.381i
    φana/(2π) 0 0.234 0.492 0.711
    φsim/(2π) 0 0.234 0.491 0.710
    1 200 D1/(10-10 m) -0.133+0.010i 0.872+0.755i 0.165+1.747i -0.830+1.177i
    φana/(2π) 0 0.251 0.494 0.720
    φsim/(2π) 0 0.251 0.494 0.720
    1 500 D1/(10-10 m) -0.669+0.482i 0.221+0.035i 0.670+0.925i -0.388+1.293i
    φana/(2π) 0 0.249 0.498 0.791
    φsim/(2π) 0 0.249 0.499 0.792
    下载: 导出CSV

    表  2  水声扩散超表面厚度和频率等参数

    Table  2.   Parameters such as the thickness and frequency of the underwater acoustic diffusion metasurface

    number a/cm frequency range/Hz fr/% ar reference
    1 10 300~1 500 133 1/50~1/10 the present
    2 3.8 14 300~40 500 96 1/3~1 [25]
    3 5 700~1 150 49 1/40~1/25 [26]
    4 5 200~800 120 1/150~1/50 [27]
    注 1  表2中fr=2(fufl)/(fu+fl),ar=a/λfufl分别表示频率上限和频率下限,λ表示声波波长.
    下载: 导出CSV
  • [1] 刘倩倩, 徐宁. 基于声隐身技术的水下无人系统防护功能材料研究[J]. 电声技术, 2020, 44(1): 19-23.

    LIU Qianqian, XU Ning. Research on functional materials of unmanned underwater system based on protection performance[J]. Audio Engineering, 2020, 44(1): 19-23. (in Chinese)
    [2] 焦达文. 分层海水环境中水下电场衰减规律和分布特性研究[J]. 舰船科学技术, 2021, 43(13): 137-142.

    JIAO Dawen. Research on attenuation law and distribution characteristics of underwater electric field in stratified seawater environment[J]. Ship Science and Technology, 2021, 43(13): 137-142. (in Chinese)
    [3] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5): 479-510.

    SUN Weiwei, YANG Gang, CHEN Chao, et al. Development status and literature analysis of China's earth observation remote sensing satellites[J]. Journal of Remote Sensing, 2020, 24(5): 479-510. (in Chinese)
    [4] 白鸿柏, 詹智强, 任志英. 金属橡胶声学性能研究进展与展望[J]. 振动与冲击, 2020, 39(23): 242-254.

    BAI Hongbai, ZHAN Zhiqiang, REN Zhiying. Progress and prospect of acoustic properties of metal rubber[J]. Journal of Vibration and Shock, 2020, 39(23): 242-254. (in Chinese)
    [5] QIN D H, PAN G, LEE S, et al. Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor[J]. Ocean Engineering, 2019, 188: 106228. doi: 10.1016/j.oceaneng.2019.106228
    [6] WANG W Q, XIE Y B, POPA B I, et al. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface[J]. Journal of Applied Physics, 2016, 120(19): 195103. doi: 10.1063/1.4967738
    [7] CHEN J, XIAO J, LISEVYCH D, et al. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens[J]. Nature Communications, 2018, 9: 4920. doi: 10.1038/s41467-018-07315-6
    [8] ASSOUAR B, LIANG B, WU Y, et al. Acoustic metasurfaces[J]. Nature Reviews Materials, 2018, 3(12): 460-472. doi: 10.1038/s41578-018-0061-4
    [9] TIAN Z H, SHEN C, LI J F, et al. Programmable acoustic metasurfaces[J]. Advanced Functional Materials, 2019, 29(13): 1808489. doi: 10.1002/adfm.201808489
    [10] CAI L, WEN J H, YU D L, et al. Beam steering of the acoustic metasurface under a subwavelength periodic modulation[J]. Applied Physics Letters, 2017, 111(20): 201902. doi: 10.1063/1.5001954
    [11] ZHAO J J, LI B W, CHEN Z N, et al. Redirection of sound waves using acoustic metasurface[J]. Applied Physics Letters, 2013, 103(15): 151604. doi: 10.1063/1.4824758
    [12] HUR S, CHOI H, YOON G H, et al. Planar ultrasonic transducer based on a metasurface piezoelectric ring array for subwavelength acoustic focusing in water[J]. Scientific Reports, 2022, 12(1): 1485. doi: 10.1038/s41598-022-05547-7
    [13] BAI Y Z, SONG A L, SUN C Y, et al. Broadband sound focusing with tunable focus based on reconfigurable acoustic coding metagrating[J]. Applied Physics Letters, 2023, 122(26): 261705. doi: 10.1063/5.0152748
    [14] TIAN Y, WEI Q, CHENG Y, et al. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude[J]. Applied Physics Letters, 2017, 110(19): 191901. doi: 10.1063/1.4983282
    [15] LI W B, LU G X, HUANG X D. Acoustic hologram of the metasurface with phased arrays via optimality criteria[J]. Mechanical Systems and Signal Processing, 2022, 180: 109420. doi: 10.1016/j.ymssp.2022.109420
    [16] LI J F, WANG W Q, XIE Y B, et al. A sound absorbing metasurface with coupled resonators[J]. Applied Physics Letters, 2016, 109(9): 091908. doi: 10.1063/1.4961671
    [17] YUAN T Y, SONG X, XU J J, et al. Tunable acoustic composite metasurface based porous material for broadband sound absorption[J]. Composite Structures, 2022, 298: 116014. doi: 10.1016/j.compstruct.2022.116014
    [18] CHEN H Y, CHAN C T. Acoustic cloaking and transformation acoustics[J]. Journal of Physics D: Applied Physics, 2010, 43(11): 113001. doi: 10.1088/0022-3727/43/11/113001
    [19] SIECK C F, MARTIN T P, WISSMAN J P, et al. Aqueous acoustic metasurface for the anomalous reflection of sound[J]. The Journal of the Acoustical Society of America, 2019, 146(4): 300.
    [20] DUAN M Y, YU C L, XIN F X, et al. Tunable underwater acoustic metamaterialsvia quasi-Helmholtz resonance: from low-frequency to ultra-broadband[J]. Applied Physics Letters, 2021, 118(7): 071904. doi: 10.1063/5.0028135
    [21] BALLESTERO E, JIMÉNEZ N, GROBY J P, et al. Metadiffusers for quasi-perfect and broadband sound diffusion[J]. Applied Physics Letters, 2021, 119(4): 044101. doi: 10.1063/5.0053413
    [22] SCHROEDER M R. Diffuse sound reflection by maximum-length sequences[J]. The Journal of the Acoustical Society of America, 1975, 57(1): 149-150. doi: 10.1121/1.380425
    [23] SCHROEDER M R. Binaural dissimilarity and optimum ceilings for concert halls: more lateral sound diffusion[J]. The Journal of the Acoustical Society of America, 1979, 65(4): 958-963. doi: 10.1121/1.382601
    [24] ZHU Y F, FAN X D, LIANG B, et al. Ultrathin acoustic metasurface-based schroeder diffuser[J]. Physical Review X, 2017, 7(2): 021034. doi: 10.1103/PhysRevX.7.021034
    [25] JIMÉNEZ N, COX T J, ROMERO-GARCÍA V, et al. Metadiffusers: deep-subwavelength sound diffusers[J]. Scientific Reports, 2017, 7(1): 5389. doi: 10.1038/s41598-017-05710-5
    [26] XIAO L, CAO W K, HE S, et al. Absorption-diffusion integrated acoustic metasurface for scattering reduction[J]. Applied Acoustics, 2024, 224: 110136. doi: 10.1016/j.apacoust.2024.110136
    [27] YU G K, QIU Y P, LI Y, et al. Underwater acoustic stealth by a broadband 2-bit coding metasurface[J]. Physical Review Applied, 2021, 15(6): 064064. doi: 10.1103/PhysRevApplied.15.064064
    [28] LI R C, JIANG Y T, ZHU R R, et al. Design of ultra-thin underwater acoustic metasurface for broadband low-frequency diffuse reflection by deep neural networks[J]. Scientific Reports, 2022, 12(1): 12037. doi: 10.1038/s41598-022-16312-1
    [29] LIANG T B, HE M, DONG H W, et al. Ultrathin waterborne acoustic metasurface for uniform diffuse reflections[J]. Mechanical Systems and Signal Processing, 2023, 192: 110226. doi: 10.1016/j.ymssp.2023.110226
    [30] CHEN D C, ZHU X F, WEI Q, et al. Broadband tunable focusing lenses by acoustic coding metasurfaces[J]. Journal of Physics D: Applied Physics, 2020, 53(25): 255501. doi: 10.1088/1361-6463/ab8247
    [31] ZHOU H T, FU W X, WANG Y F, et al. High-efficiency ultrathin nonlocal waterborne acoustic metasurface[J]. Physical Review Applied, 2021, 15(4): 044046. doi: 10.1103/PhysRevApplied.15.044046
    [32] ZHOU H T, FU W X, LI X S, et al. Loosely coupled reflective impedance metasurfaces: precise manipulation of waterborne sound by topology optimization[J]. Mechanical Systems and Signal Processing, 2022, 177: 109228. doi: 10.1016/j.ymssp.2022.109228
    [33] 牛嘉敏, 吴九汇. 非对称类声学超材料的低频宽带吸声特性[J]. 振动与冲击, 2018, 37(19): 45-49.

    NIU Jiamin, WU Jiuhui. Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials[J]. Journal of Vibration and Shock, 2018, 37(19): 45-49. (in Chinese)
    [34] 林臻, 吴九汇. 含间隙非线性弹性超材料的低频宽带机理[J]. 应用数学和力学, 2022, 43(5): 524-533. doi: 10.21656/1000-0887.430103

    LIN Zhen, WU Jiuhui. The low-frequency broadband mechanism of nonlinear elastic metamaterials with gaps[J]. Applied Mathematics and Mechanics, 2022, 43(5): 524-533. (in Chinese) doi: 10.21656/1000-0887.430103
    [35] LI J S, WEN X H, SHENG P. Acoustic metamaterials[J]. Journal of Applied Physics, 2021, 129(17): 171103. doi: 10.1063/5.0046878
    [36] FAHY F J, GARDONIO P. Sound and Structural Vibration: Radiation, Transmission and Response[M]. Elsevier, 2007.
    [37] 姚谦, 杨钊, 王昕, 等. 力学超结构设计方法研究进展[J]. 应用数学和力学, 2024, 45(8): 974-1000. doi: 10.21656/1000-0887.450307

    YAO Qian, YANG Zhao, WANG Xin, et al. The low-frequency a review of design methods for mechanical metastructures[J]. Applied Mathematics and Mechanics, 2025, 45(8): 974-1000. (in Chinese) doi: 10.21656/1000-0887.450307
    [38] CHEN Z, GUAN S, XIE Q, et al. Locally resonant metasurface for low-frequency transmissive underwater acoustic waves[J]. Frontiers in Physics, 2023, 10: 1098261. doi: 10.3389/fphy.2022.1098261
    [39] CHEN Z, YAN F, NEGAHBAN M, et al. Resonator-based reflective metasurface for low-frequency underwater acoustic waves[J]. 2020, 128(5): 055305.
    [40] 胡博, 刘凯, 赵思缘, 等. 水下声学超表面异常折射方向调控研究[J]. 哈尔滨工程大学学报, 2024, 45(1): 93-102.

    HU Bo, LIU Kai, ZHAO Siyuan, et al. Research on the regulation of abnormal refraction direction of underwater acoustic metasurface[J]. Journal of Harbin Engineering University, 2024, 45(1): 93-102. (in Chinese)
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  11
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-04-18
  • 刊出日期:  2026-02-01

目录

    /

    返回文章
    返回