留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温感知非晶SiCN陶瓷的微纳力学特性及压阻行为

魏浩冉 白誉杰 牛家宏 杨强

魏浩冉, 白誉杰, 牛家宏, 杨强. 高温感知非晶SiCN陶瓷的微纳力学特性及压阻行为[J]. 应用数学和力学, 2025, 46(8): 1016-1026. doi: 10.21656/1000-0887.460068
引用本文: 魏浩冉, 白誉杰, 牛家宏, 杨强. 高温感知非晶SiCN陶瓷的微纳力学特性及压阻行为[J]. 应用数学和力学, 2025, 46(8): 1016-1026. doi: 10.21656/1000-0887.460068
WEI Haoran, BAI Yujie, NIU Jiahong, YANG Qiang. Micro-Nano Mechanical Properties and Piezoresistive Behaviors of High-Temperature Sensing Amorphous SiCN Ceramics[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1016-1026. doi: 10.21656/1000-0887.460068
Citation: WEI Haoran, BAI Yujie, NIU Jiahong, YANG Qiang. Micro-Nano Mechanical Properties and Piezoresistive Behaviors of High-Temperature Sensing Amorphous SiCN Ceramics[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1016-1026. doi: 10.21656/1000-0887.460068

高温感知非晶SiCN陶瓷的微纳力学特性及压阻行为

doi: 10.21656/1000-0887.460068
基金项目: 

国家自然科学基金 12202296

详细信息
    作者简介:

    魏浩冉(1999—),男,硕士(E-mail: Whaoran0929@163.com)

    通讯作者:

    牛家宏(1988—),男,副教授,博士,博士生导师(通讯作者. E-mail: niujh@scu.edu.cn)

  • 中图分类号: O39

Micro-Nano Mechanical Properties and Piezoresistive Behaviors of High-Temperature Sensing Amorphous SiCN Ceramics

  • 摘要: 数字孪生技术通过构建高精度虚拟模型,结合实时数据获取和仿真分析,在高温热端部件的设计、运行和维护过程中具有重要意义.耐高温、高灵敏度、高稳定性的传感器是数据获取并提供高温部件运行状态精准映射的关键.该文以PSN1型聚硅氮烷为前驱体,采用液态模塑成型方法制备致密非晶SiCN陶瓷,并系统研究了热解温度对其微观结构演化以及微纳力学性能、压阻特性的影响.研究表明,随着热解温度的升高,非晶SiCN的密度以及结构中自由碳相的有序度逐渐增加.在1 000~1 200 ℃热解温度范围内,密度的增加作为主导因素显著提升其弹性模量、硬度以及蠕变应力指数.当温度进一步升至1 300 ℃,sp2自由碳结构的有序化作为主导因素,增加了非晶SiCN的变形能力,引起弹性模量、硬度和蠕变应力指数的降低.此外,自由碳导电相的有序化显著提升了非晶SiCN的电导率,经1 300 ℃热解的非晶SiCN表现出最高的压阻系数(310~416),对应电阻值随应力变化呈先急剧下降后趋于平缓的趋势.该材料在900 ℃高温环境下仍具有良好的压阻性能和稳定性,表明了其在高温压力传感器领域的应用潜力.
    (Recommended by TIAN Kuo, M.AMM Youth Editorial Board)
    1)  (我刊青年编委田阔推荐)
  • 图  1  非晶SiCN的微观形貌与密度变化

    Figure  1.  The microscopic morphology and density changes of the amorphous SiCN

    图  2  非晶SiCN的XRD图谱、Raman光谱以及不同热解温度下的Raman光谱参数

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  XRD spectra, Raman spectra and Raman spectrum parameters of the amorphous SiCN at different pyrolysis temperatures

    图  3  载荷-位移曲线与数据拟合

    Figure  3.  Load-displacement curves and unloading data fittings

    图  4  斜率拟合曲线以及对应的弹性模量和硬度

    Figure  4.  Slope fitting curves and corresponding elastic modulus and hardness curves

    图  5  非晶SiCN蠕变过程曲线

    Figure  5.  The creep process curves of the amorphous SiCN

    图  6  不同热解温度非晶SiCN的应力-应变速率曲线与应变指数

    Figure  6.  Stress strain rate curves and strain indexes of curves amorphous SiCN at different pyrolysis temperatures

    图  7  不同热解温度非晶SiCN的应力-电阻曲线

    Figure  7.  Piezoresistive plots of the amorphous SiCN at different pyrolysis temperatures

    图  8  amorphous P1300-SiCN的压阻系数及稳定性测试

    Figure  8.  The stability test under cyclic loading and piezoresistive coefficients of the amorphous P1300-SiCN

    图  9  P1300非晶SiCN在不同温度下的I/V曲线

    Figure  9.  I/V curves of the amorphous SiCN at different temperatures

    图  10  不同测试温度下的压阻响应

    Figure  10.  The piezoresistive responses at different testing temperatures

    图  11  在300 ℃,600 ℃, 900 ℃及1 MPa下,P1300-SiCN电导率的Arrhenius拟合曲线

    Figure  11.  Arrhenius plots of the conductivity tested under 1 MPa at 300 ℃, 600 ℃, 900 ℃

  • [1] BOTÍN-SANABRIA D M, MIHAITA A S, PEIMBERT-GARCÍA R E, et al. Digital twin technology challenges and applications: a comprehensive review[J]. Remote Sensing, 2022, 14(6): 1335. doi: 10.3390/rs14061335
    [2] LIU M, FANG S, DONG H, et al. Review of digital twin about concepts, technologies, and industrial applications[J]. Journal of Manufacturing Systems, 2021, 58: 346-361. doi: 10.1016/j.jmsy.2020.06.017
    [3] FULLER A, FAN Z, DAY C, et al. Digital twin: enabling technologies, challenges and open research[J]. IEEE Access, 2020, 8: 108952-108971. doi: 10.1109/ACCESS.2020.2998358
    [4] LI Y, SHEN X. A novel wind speed-sensing methodology for wind turbines based on digital twin technology[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 2503213.
    [5] 何绪飞, 艾剑良, 宋智桃. 多元数据融合在无人机结构健康监测中的应用[J]. 应用数学和力学, 2018, 39(4): 395-402.

    HE Xufei, AI Jianliang, SONG Zhitao. Multi-source data fusion for health monitoring of unmanned aerial vehicle structures[J]. Applied Mathematics and Mechanics, 2018, 39(4): 395-402. (in Chinese)
    [6] 焦华宾, 莫松. 航空涡轮发动机现状及未来发展综述[J]. 航空制造技术, 2015, 58(12): 62-65.

    JIAO Huabin, MO Song. Present status and development trend of aircraft turbine engine[J]. Aeronautical Manufacturing Technology, 2015, 58(12): 62-65. (in Chinese)
    [7] DONG X, ZHAO Q, LI Y, et al. Fabrication and high temperature electrical conductivity of polymer-derived SiHfBCN ceramic coating[J]. Journal of Advanced Ceramics, 2025, 14(1): 9221011. doi: 10.26599/JAC.2024.9221011
    [8] LI D, WANG Y, WANG J, et al. Recent advances in sensor fault diagnosis: a review[J]. Sensors and Actuators A: Physical, 2020, 309: 111990. doi: 10.1016/j.sna.2020.111990
    [9] VON MOLL A, BEHBAHANI A R, FRALICK G C, et al. A review of exhaust gas temperature sensing techniques for modern turbine engine controls[C]// 50 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: AIAA, 2014: AIAA2014-3977.
    [10] PHAN H P, DAO D V, NAKAMURA K, et al. The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review[J]. Journal of Microelectromechanical Systems, 2015, 24(6): 1663-1677. doi: 10.1109/JMEMS.2015.2470132
    [11] 孙晓亮, 李达鑫, 杨治华, 等. 基于机械合金化的SiBCN系亚稳陶瓷及其复合材料研究进展[J]. 现代技术陶瓷, 2024, 45(3): 206-230.

    SUN Xiaoliang, LI Daxin, YANG Zhihua, et al. Research progress on mechanical alloyed SiBCN based metastable ceramics and their matrix composites[J]. Advanced Ceramics, 2024, 45(3): 206-230. (in Chinese)
    [12] ZHANG L, WANG Y, WEI Y, et al. A silicon carbonitride ceramic with anomalously high piezoresistivity[J]. Journal of the American Ceramic Society, 2008, 91(4): 1346-1349. doi: 10.1111/j.1551-2916.2008.02275.x
    [13] JIANG M, XU K, LIAO N, et al. Effect of sputtering power on piezoresistivity and interfacial strength of SiCN thin films prepared by magnetic sputtering[J]. Ceramics International, 2022, 48(2): 2112-2117. doi: 10.1016/j.ceramint.2021.09.299
    [14] XU W, HUANG S, GAO Y, et al. Evolution of conductive phase in SiCN ceramics for high piezoresistivity performance at high temperatures[J]. Ceramics International, 2024, 50(7): 11411-11419. doi: 10.1016/j.ceramint.2024.01.041
    [15] National Energy Technology Laboratory. NETL collaboration produces smart sensors to monitor ultra-high temperature energy systems[EB/OL]. (2019-02-19)[2025-04-18]. https://netl.doe.gov/node/8316.
    [16] JANAKIRAMAN N, ALDINGER F. Fabrication and characterization of fully dense Si-C-N ceramics from a poly (ureamethylvinyl) silazane precursor[J]. Journal of the European Ceramic Society, 2009, 29(1): 163-173. doi: 10.1016/j.jeurceramsoc.2008.05.028
    [17] WANG Y, FEI W, AN L. Oxidation/corrosion of polymer-derived SiAlCN ceramics in water vapor[J]. Journal of the American Ceramic Society, 2006, 89(3): 1079-1082. doi: 10.1111/j.1551-2916.2005.00791.x
    [18] TABOR D. A simple theory of static and dynamic hardness[J]. Proceedings of the Royal Society A, 1948, 192: 247-274.
    [19] VLASSAK J J, NIX W D. Measuring the elastic properties of anisotropic materials by means of indentation experiments[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(8): 1223-1245. doi: 10.1016/0022-5096(94)90033-7
    [20] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. doi: 10.1557/JMR.1992.1564
    [21] JANAKIRAMAN N, ALDINGER F. Yielding, strain hardening, and creep under nanoindentation of precursor-derived Si-C-N ceramics[J]. Journal of the American Ceramic Society, 2010, 93(3): 821-829. doi: 10.1111/j.1551-2916.2009.03491.x
    [22] ZIEGLER G, KLEEBE H J, MOTZ G, et al. Synthesis, microstructure and properties of SiCN ceramics prepared from tailored polymers[J]. Materials Chemistry and Physics, 1999, 61(1): 55-63. doi: 10.1016/S0254-0584(99)00114-5
    [23] Jerry Janesch Keithley Instruments. Two-wire vs four-wire resistance measurements: which configuration makes sense for your application[EB/OL]. (2013-05-09)[2025-04-18]. https://www.tek.com/en/documents/technical-article/two-wire-vs-four-wire-resistance-measurements-which-configuration-makes-s.
    [24] REN Z, MUJIB S B, SINGH G. High-temperature properties and applications of Si-based polymer-derived ceramics: a review[J]. Materials, 2021, 14(3): 614. doi: 10.3390/ma14030614
  • 加载中
图(11)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-09
  • 修回日期:  2025-04-18
  • 刊出日期:  2025-08-01

目录

    /

    返回文章
    返回