## 留言板

 引用本文: 覃燕梅, 冯民富, 周天孝. 瞬态Navier-Stokes方程的一种新的全离散粘性稳定化方法[J]. 应用数学和力学, 2009, 30(7): 783-798.
QIN Yan-mei, FENG Min-fu, ZHOU Tian-xiao. A New Full Discrete Stabilized Viscosity Method for the Transient Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2009, 30(7): 783-798. doi: 10.3879/j.issn.1000-0887.2009.07.004
 Citation: QIN Yan-mei, FENG Min-fu, ZHOU Tian-xiao. A New Full Discrete Stabilized Viscosity Method for the Transient Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2009, 30(7): 783-798.

## 瞬态Navier-Stokes方程的一种新的全离散粘性稳定化方法

##### doi: 10.3879/j.issn.1000-0887.2009.07.004

###### 作者简介:覃燕梅(1980- ),四川青神人,讲师,硕士(Tel:+86-832-5063638;E-mail:qinyanmei0809@163.com);冯民富,教授(联系人.E-mail:fmf@wtjs.cn).
• 中图分类号: O242.21

## A New Full Discrete Stabilized Viscosity Method for the Transient Navier-Stokes Equations

• 摘要: 基于压力投影和梯形外推公式,对速度/压力空间采用等阶多项式逼近,针对高Reynolds数下的瞬态Navier-Stokes方程提出了一种新的全离散粘性稳定化方法．该方法不仅绕开了inf-sup条件的限制,克服了高Reynolds数下对流占优造成的不稳定性,而且在每一时间步上,只需要进行线性计算,从而减少了计算量．给出了稳定性证明,并得出了与粘性系数一致的误差估计．理论和数值结果表明该方法具有二阶精度．
•  [1] Brezzi F,Fortin M.Mixed and Hybrid Finite Element Methods[M].Springer Series in Computational Mathematics.Vol 15.New York: Springer,1991. [2] Girault V,Raviart P.Finite Element Methods for the Navier-Stokes Equations[M].Berlin: Springer,1986. [3] Zhou T X,Feng M F.A least square Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J].Mathematics of Computation,1993,66(202):531-543. [4] Douglas J,Wang J. An absolutely stabilized finite element method for the Stokes problem[J].Mathematics of Computation,1989,52(186):495-508. [5] Bochev P B,Dohrman C R,Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J].SIAM Journal on Numerical Analysis,2006,44(1):82-101. [6] Li J,He Y N.A stabilized finite element method based on two local Guass integrations for the Stokes equations[J].Journal of Computational and Applied Mathematics,2008,214(1):58-65. [7] Dohrman C R,Bochev P B.A stabilized finite element method for the Stokes problem based on polynomial pressure projections[J].International Journal for Numerical Methods in Fluids,2004,46(2): 183-201. doi: 10.1002/fld.752 [8] He Y N,Li J.A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J].Applied Numerical Mathematics,2008,58(10): 1503-1514. [9] Li J,He Y N,Chen Z X. A new stabilized finite element method for the transient Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,2007,197(1/4):22-35. [10] Heywood J G,Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes problem—part Ⅳ:error estimates for second-order error estimates for spatial discretization[J].SIAM Journal on Numerical Analysis,1990,27(2):353-384. doi: 10.1137/0727022 [11] Girault V,Raviart P A.Finite Element Approximation of the Navier-Stokes Equations[M].Lecture Notes in Math.Vol 749.Berlin: Springer, 1974. [12] He Y N. Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations[J].SIAM Journal on Numerical Analysis,2003,41(4):1263-1285. [13] Burman E.Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem[J].Numerical Methods for Partial Differential Equations,2008,24(1): 127-143. [14] Heywood J G,Rannacher R.Finite element approximation of the nonstationary Navier-Stokes problem—Ⅰ:regularity of solutions and second-order error estimates for spatial discretization[J].SIAM Journal on Numerical Analysis,1982,19(2):275-311. doi: 10.1137/0719018

##### 计量
• 文章访问数:  1624
• HTML全文浏览量:  125
• PDF下载量:  1056
• 被引次数: 0
##### 出版历程
• 收稿日期:  2009-01-05
• 修回日期:  2009-05-18
• 刊出日期:  2009-07-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈