## 留言板

 引用本文: 张永新. 一类受迫Liénard系统的最终零解[J]. 应用数学和力学, 2009, 30(10): 1251-1260.
ZHANG Yong-xin. Eventually Vanished Solutions of a Forced Li閚ard System[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1251-1260. doi: 10.3879/j.issn.1000-0887.2009.10.013
 Citation: ZHANG Yong-xin. Eventually Vanished Solutions of a Forced Li閚ard System[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1251-1260.

## 一类受迫Liénard系统的最终零解

##### doi: 10.3879/j.issn.1000-0887.2009.10.013

###### 作者简介:张永新(1976- ),男,四川三台人,讲师,博士生(E-mail:zhangyongxins@tgmail.com).
• 中图分类号: O175.12

## Eventually Vanished Solutions of a Forced Li閚ard System

• 摘要: 寻找一类带有时间依赖强迫项的Liénard系统的最终零解，这是一种当t±∞时趋于0的特殊有界解〖CX4〗．〖CX〗由于不是微扰的Hamilton系统,所以不能使用Melnikov方法来判断最终零解的存在性．研究了一个逼近原系统的周期受迫系统序列的周期解序列，并且证明这个周期解序列有一个收敛子列，其极限就是原受迫Liénard系统的最终零解．
•  [1] Hahan W. Stability of Motion[M]. Berlin-New York：Springer-Verlag,1967. [2] Yoshizawa T. Stability Theory by Liapunov′s Second Method[M]. Takyo：The Math Soc of Japan, 1996. [3] Hale J K. Ordinary Differential Equations [M].2nd ed. New York：Willey-Interscience，1980. [4] Buica A, Gasull A, Yang J. The third order Melnikov function of a quadratic center under quadratic perturbations [J]. J Math Anal Appl， 2007，331(1):443-454. [5] Champneys A, Lord G,Computation of homoclinic solutions to periodic orbits in a reducedwater-wave problem [J]. Physica D: Nonlinear Phenomena,1997,102(1/2):101-124. [6] Chow S N，Hale J K,Mallet-Paret J. An example of bifurcation to homoclinic orbits [J]. J Differential Equations,1980,37(3):351-371. [7] Dumortier F, LI Cheng-zhi, ZHANG Zhi-fen.Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops [J]. J Differential Equations, 1997,139(1):146-193. [8] LI Cheng-zhi, Rousseau C.A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: the cusp of order 4 [J]. J Differential Equations, 1989,79(1):132-167. [9] ZHU Chang-rong, ZHANG Wei-nian. Computation of bifurcation manifolds of linearly independent homoclinic orbits [J]. J Differential Equations, 2008,245(7):1975-1994. [10] Mawhin J, Ward J. Periodic solutions of second order forced Liénard differential equations at resonance [J]. Arch Math, 1983,41(2):337-351. [11] Omari P, Villari G, Zanolin F. Periodic solutions of Linard differential equations with one-sided growth restriction [J]. J Differential equations, 1987,67(2):278-293. [12] Franks J. Generalizations of the Poincaré-Birkhoff theorem [J]. Annals of Math,1988,128(1):139-151. doi: 10.2307/1971464 [13] Jacobowitz H. Periodic solutions of 〖AKx¨〗+f(x,t)=0 via Poincaré-Birkhoff theorem [J]. J Differential Equations, 1976,20(1):37-52. [14] Andronov A, Vitt E, Khaiken S. Theory of Oscillators [M]. Oxford：Pergamon Press, 1966. [15] Guckenheimer J, Holmes P. Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields [M]. New York：Springer,1983. [16] Rabinowitz P. Homoclinic orbits for a class of Hamiltonian systems [J]. Proc Roy Soc Edinburgh,1990, 114〖WTHZ〗A(1):33-38. [17] Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications [J]. J Funct Anal, 1973,14(2):349-381. [18] Chow S N, Hale J K. Methods of Bifurcation Theory [M]. New York, Springer：1982. [19] Carri〖AKa~〗o P, Miyagaki O.Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J]. J Math Anal Appl, 1999,230(1):157-172. [20] Szulkin A, Zou W. Homoclinic orbits for asymptotically linear Hamiltonian systems [J]. J Funct Anal, 2001, 187(1):25-41. [21] Izydorek M, Janczewska J. Homoclinic solutions for a class of the second order Hamiltonian systems [J]. J Differential Equations, 2005, 219(2):375-389. [22] Izydorek M, Janczewska J. Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential [J]. J Math Anal Appl, 2007,335(2):1119-1127. [23] Tang X H, Xiao L. Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential [J]. J Math Anal Appl, 2009,351(2):586-594. [24] Tang X H, Xiao L. Homoclinic solutions for a class of second-order Hamiltonian systems [J]. J Math Anal Appl, 2009,354(2):539-549. [25] Zelati V, Ekeland I, Séré E. A variational approach to homoclinic orbits in Hamiltonian systems [J]. Math Ann, 1990,288(1):133-160. [26] Sansone G, Conti R. Nonlinear Differential Equations[M]. New York：Pergamon Press，1964.

##### 计量
• 文章访问数:  1045
• HTML全文浏览量:  34
• PDF下载量:  662
• 被引次数: 0
##### 出版历程
• 收稿日期:  2009-04-09
• 修回日期:  2009-08-19
• 刊出日期:  2009-10-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈