留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类受迫Liénard系统的最终零解

张永新

张永新. 一类受迫Liénard系统的最终零解[J]. 应用数学和力学, 2009, 30(10): 1251-1260. doi: 10.3879/j.issn.1000-0887.2009.10.013
引用本文: 张永新. 一类受迫Liénard系统的最终零解[J]. 应用数学和力学, 2009, 30(10): 1251-1260. doi: 10.3879/j.issn.1000-0887.2009.10.013
ZHANG Yong-xin. Eventually Vanished Solutions of a Forced Li閚ard System[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1251-1260. doi: 10.3879/j.issn.1000-0887.2009.10.013
Citation: ZHANG Yong-xin. Eventually Vanished Solutions of a Forced Li閚ard System[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1251-1260. doi: 10.3879/j.issn.1000-0887.2009.10.013

一类受迫Liénard系统的最终零解

doi: 10.3879/j.issn.1000-0887.2009.10.013
详细信息
    作者简介:

    张永新(1976- ),男,四川三台人,讲师,博士生(E-mail:zhangyongxins@tgmail.com).

  • 中图分类号: O175.12

Eventually Vanished Solutions of a Forced Li閚ard System

  • 摘要: 寻找一类带有时间依赖强迫项的Liénard系统的最终零解,这是一种当t±∞时趋于0的特殊有界解〖CX4〗.〖CX〗由于不是微扰的Hamilton系统,所以不能使用Melnikov方法来判断最终零解的存在性.研究了一个逼近原系统的周期受迫系统序列的周期解序列,并且证明这个周期解序列有一个收敛子列,其极限就是原受迫Liénard系统的最终零解.
  • [1] Hahan W. Stability of Motion[M]. Berlin-New York:Springer-Verlag,1967.
    [2] Yoshizawa T. Stability Theory by Liapunov′s Second Method[M]. Takyo:The Math Soc of Japan, 1996.
    [3] Hale J K. Ordinary Differential Equations [M].2nd ed. New York:Willey-Interscience,1980.
    [4] Buica A, Gasull A, Yang J. The third order Melnikov function of a quadratic center under quadratic perturbations [J]. J Math Anal Appl, 2007,331(1):443-454. doi: 10.1016/j.jmaa.2006.09.008
    [5] Champneys A, Lord G,Computation of homoclinic solutions to periodic orbits in a reducedwater-wave problem [J]. Physica D: Nonlinear Phenomena,1997,102(1/2):101-124.
    [6] Chow S N,Hale J K,Mallet-Paret J. An example of bifurcation to homoclinic orbits [J]. J Differential Equations,1980,37(3):351-371. doi: 10.1016/0022-0396(80)90104-7
    [7] Dumortier F, LI Cheng-zhi, ZHANG Zhi-fen.Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops [J]. J Differential Equations, 1997,139(1):146-193. doi: 10.1006/jdeq.1997.3285
    [8] LI Cheng-zhi, Rousseau C.A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: the cusp of order 4 [J]. J Differential Equations, 1989,79(1):132-167. doi: 10.1016/0022-0396(89)90117-4
    [9] ZHU Chang-rong, ZHANG Wei-nian. Computation of bifurcation manifolds of linearly independent homoclinic orbits [J]. J Differential Equations, 2008,245(7):1975-1994. doi: 10.1016/j.jde.2008.06.029
    [10] Mawhin J, Ward J. Periodic solutions of second order forced Liénard differential equations at resonance [J]. Arch Math, 1983,41(2):337-351. doi: 10.1007/BF01371406
    [11] Omari P, Villari G, Zanolin F. Periodic solutions of Linard differential equations with one-sided growth restriction [J]. J Differential equations, 1987,67(2):278-293. doi: 10.1016/0022-0396(87)90151-3
    [12] Franks J. Generalizations of the Poincaré-Birkhoff theorem [J]. Annals of Math,1988,128(1):139-151. doi: 10.2307/1971464
    [13] Jacobowitz H. Periodic solutions of 〖AKx¨〗+f(x,t)=0 via Poincaré-Birkhoff theorem [J]. J Differential Equations, 1976,20(1):37-52. doi: 10.1016/0022-0396(76)90094-2
    [14] Andronov A, Vitt E, Khaiken S. Theory of Oscillators [M]. Oxford:Pergamon Press, 1966.
    [15] Guckenheimer J, Holmes P. Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields [M]. New York:Springer,1983.
    [16] Rabinowitz P. Homoclinic orbits for a class of Hamiltonian systems [J]. Proc Roy Soc Edinburgh,1990, 114〖WTHZ〗A(1):33-38.
    [17] Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications [J]. J Funct Anal, 1973,14(2):349-381. doi: 10.1016/0022-1236(73)90051-7
    [18] Chow S N, Hale J K. Methods of Bifurcation Theory [M]. New York, Springer:1982.
    [19] Carri〖AKa~〗o P, Miyagaki O.Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J]. J Math Anal Appl, 1999,230(1):157-172. doi: 10.1006/jmaa.1998.6184
    [20] Szulkin A, Zou W. Homoclinic orbits for asymptotically linear Hamiltonian systems [J]. J Funct Anal, 2001, 187(1):25-41. doi: 10.1006/jfan.2001.3798
    [21] Izydorek M, Janczewska J. Homoclinic solutions for a class of the second order Hamiltonian systems [J]. J Differential Equations, 2005, 219(2):375-389. doi: 10.1016/j.jde.2005.06.029
    [22] Izydorek M, Janczewska J. Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential [J]. J Math Anal Appl, 2007,335(2):1119-1127. doi: 10.1016/j.jmaa.2007.02.038
    [23] Tang X H, Xiao L. Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential [J]. J Math Anal Appl, 2009,351(2):586-594. doi: 10.1016/j.jmaa.2008.10.038
    [24] Tang X H, Xiao L. Homoclinic solutions for a class of second-order Hamiltonian systems [J]. J Math Anal Appl, 2009,354(2):539-549. doi: 10.1016/j.jmaa.2008.12.052
    [25] Zelati V, Ekeland I, Séré E. A variational approach to homoclinic orbits in Hamiltonian systems [J]. Math Ann, 1990,288(1):133-160. doi: 10.1007/BF01444526
    [26] Sansone G, Conti R. Nonlinear Differential Equations[M]. New York:Pergamon Press,1964.
  • 加载中
计量
  • 文章访问数:  1045
  • HTML全文浏览量:  34
  • PDF下载量:  662
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-09
  • 修回日期:  2009-08-19
  • 刊出日期:  2009-10-15

目录

    /

    返回文章
    返回