留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在重力作用下的上覆无限热弹性流体对广义热弹性固体转动的影响

P·艾拉瓦利亚 N·S·纳拉

P·艾拉瓦利亚, N·S·纳拉. 在重力作用下的上覆无限热弹性流体对广义热弹性固体转动的影响[J]. 应用数学和力学, 2009, 30(12): 1415-1426. doi: 10.3879/j.issn.1000-0887.2009.12.003
引用本文: P·艾拉瓦利亚, N·S·纳拉. 在重力作用下的上覆无限热弹性流体对广义热弹性固体转动的影响[J]. 应用数学和力学, 2009, 30(12): 1415-1426. doi: 10.3879/j.issn.1000-0887.2009.12.003
Praveen Ailawalia, Naib Singh Narah. Effect of Rotation in Generalized Thermoelastic Solid Under the Influence of Gravity With an Overlying Infinite Thermoelastic Fluid[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1415-1426. doi: 10.3879/j.issn.1000-0887.2009.12.003
Citation: Praveen Ailawalia, Naib Singh Narah. Effect of Rotation in Generalized Thermoelastic Solid Under the Influence of Gravity With an Overlying Infinite Thermoelastic Fluid[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1415-1426. doi: 10.3879/j.issn.1000-0887.2009.12.003

在重力作用下的上覆无限热弹性流体对广义热弹性固体转动的影响

doi: 10.3879/j.issn.1000-0887.2009.12.003
详细信息
  • 中图分类号: O343.6

Effect of Rotation in Generalized Thermoelastic Solid Under the Influence of Gravity With an Overlying Infinite Thermoelastic Fluid

  • 摘要: 计及上覆无限热弹性流体的重力作用,沿界面有不同的外力作用时,研究广义热弹性固体的旋转变形问题.在Laplace和Fourier域内,通过积分变换,得到了位移、应力及温度分布的表达式.然后在物理域内,应用数值逆变换方法,得到这些分量的值,并讨论了该问题的一些特例.结果以图形方式给出,显示了介质的旋转以及重力作用的影响.
  • [1] Chandrasekharaiah D S.Hyperbolic thermoelastic:a review of recent literature[J].Appl Mech Rev,1998,51(12):705-729. doi: 10.1115/1.3098984
    [2] Lord H W,Shulman Y.A generalized dynamical theory of thermoelasticity solids[J].J Mech Phy Solids,1967,15(5):299-309. doi: 10.1016/0022-5096(67)90024-5
    [3] Müller I.The coldness,a universal function in thermoelastic bodies[J].Arch Rat Mech Anal,1971,41(5):319-332.
    [4] Green A E,Laws N.On the entropy production inequality[J].Arch Rat Mech Anal,1972,45(1):45-47.
    [5] Green A E,Lindsay K A.Thermoelasticity[J].J Elasticity,1972,2(1):1-7. doi: 10.1007/BF00045689
    [6] Suhubi E S.Thermoelastic solids[A].In:Eringin A C,Ed.Continuum Physics[C].Vol Ⅱ Part Ⅱ,Chapter Ⅱ.New York:Acamadic Press,1975.
    [7] Green A E,Naghdi P M.On thermoelasticity without energy dissipation[J].J Elasticity,1993,31(3):189-208. doi: 10.1007/BF00044969
    [8] Barber J R,Martin-Moran C J.Green's functions for transient thermoelastic contact problems for the half-plane[J].Wear,1982,79:11-19. doi: 10.1016/0043-1648(82)90200-9
    [9] Barber J R.Thermoelastic displacements and stresses due to a heat source moving over the surface of a half plane[J].ASME,Transactions,Journal of Applied Mechanics,1984,51(3):636-640. doi: 10.1115/1.3167685
    [10] Sherief H H.Fundamental solution of the generalized thermoelastic problem for short times[J].J Thermal Stresses,1986,9(2):151-164. doi: 10.1080/01495738608961894
    [11] Dhaliwal R S,Majumdar S R,Wang J.Thermoelastic waves in an infinite solid caused by a line heat source[J].Int J Math & Math Sci,1997,20(2):323-334.
    [12] Chandrasekharaiah D S,Srinath K S.Thermoelastic interactions without energy dissipation due to a point heat source[J].J Elasticity,1998,50(2):97-108. doi: 10.1023/A:1007412106659
    [13] Sharma J N,Chauhan R S,Kumar R.Time-harmonic sources in a generalized thermoelastic continuum[J].J Thermal Stresses,2000,23(7):657-674. doi: 10.1080/01495730050130048
    [14] Sharma J N,Chauhan R S.Mechanical and thermal sources in a generalized thermoelastic half-space[J].J Thermal Stresses,2001,24(7):651-675. doi: 10.1080/014957301300194823
    [15] Sharma J N,Sharma P K,Gupta S K.Steady state response to moving loads in thermoelastic solid media[J].J Thermal Stresses,2004,27(10):931-951. doi: 10.1080/01495730490440181
    [16] 德斯瓦尔 S,乔德哈瑞 S.带扩散的广义弹性固体中移动荷载引起的二维相互作用[J].应用数学和力学,2008,29(2):188-202.
    [17] Chand D,Sharma J N,Sud S P.Transient generalized magneto-thermoelastic waves in a rotating half space[J].Int J Engg Sci,1990,28(6):547-556. doi: 10.1016/0020-7225(90)90057-P
    [18] Schoenberg M,Censor D.Elastic waves in rotating media[J].Quart Appl Math,1973,31:115-125.
    [19] Clarke N S,Burdness J S.Rayleigh waves on a rotating surface[J].ASME J Appl Mech,1994,61:724-726. doi: 10.1115/1.2901524
    [20] Destrade M.Surface waves in rotating rhombic crystal[J].Proc Royal Soc London,Series A,2004,460:653-665. doi: 10.1098/rspa.2003.1192
    [21] Roychoudhuri S K,Mukhopadhyay S.Effect of rotation and relaxation times on plane waves in generalized thermo-visco-elasticity[J].Int J Math Math Sci,2000,23(7):497-505. doi: 10.1155/S0161171200001356
    [22] Ting T C T.Surface waves in a rotating anisotropic elastic half-space[J].Wave Motion,2004,40(4):329-346. doi: 10.1016/j.wavemoti.2003.10.005
    [23] Sharma J N,Thakur D.Effect of rotation on Rayleigh-Lamb waves in magneto-thermoelastic media[J].J Sound Vib,2006,296(4/5):871-887. doi: 10.1016/j.jsv.2006.03.014
    [24] Sharma J N,Walia V.Effect of rotation on Rayleigh-Lamb waves in piezothermoelastic half space[J].J Solid Structures,2007,44(3/4):1060-1072. doi: 10.1016/j.ijsolstr.2006.06.005
    [25] Sharma J N,Othman M I A.Effect of rotation on generalized thermo-viscoelastic Rayleigh-Lamb waves[J].J Solid Structures,2007,44(13):4243-4255. doi: 10.1016/j.ijsolstr.2006.11.016
    [26] Sharma J N,Walia V,Gupta S K.Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space[J].Int J Mech Sci,2008,50(3):433-444. doi: 10.1016/j.ijmecsci.2007.10.001
    [27] Othman M I A,Song Y.Effect of rotation on plane waves of generalized electro-magneto-thermoviscoelasticity with two relaxation times[J].Appl Math Modelling,2008,32(5):811-825. doi: 10.1016/j.apm.2007.02.025
    [28] Bromwich T J J A.On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe[J].Proc London Math Soc,1898,30(1):98-120. doi: 10.1112/plms/s1-30.1.98
    [29] Love A E H.Some Problems of Geodynamics[M].New York:Dover,1911.
    [30] De S N,Sengupta P R.Plane Lamb's problem under the influence of gravity[J].Gerland Beitr Geophysics (Leipzig),1973,82:421-426.
    [31] De S N,Sengupta P R.Influence of gravity on wave propagation in an elastic layer[J].J Acoust Soc Am,1974,55(5):919-921. doi: 10.1121/1.1914662
    [32] De S N,Sengupta P R.Surface waves under the influence of gravity[J].Gerland Beitr Geophysics (Leipzig),1976,85:311-318.
    [33] Sengupta P R,Acharya D.The influence of gravity on the propagation of waves in a thermoelastic layer[J].Rev Roum Sci Technol Mech Appl Tome,1979,24:395-406.
    [34] Das S C,Acharya D P,Sengupta P R.Surface waves in an inhomogeneous elastic medium under the influence of gravity[J].Rev Roum Des Sci Tech,1992,37(5):539-551.
    [35] Abd-Alla A M,Ahmed S M.Rayleigh waves in an orthotropic thermoelastic medium under gravity field and initial stress[J].J Earth Moon Planets,1996,75(3):185-197. doi: 10.1007/BF02592996
    [36] Abd-Alla A M,Ahmed S M.Stonley and Rayleigh waves in a nonhomogeneous orthotropic elastic medium under the influence of gravity[J].Appl Math Comp,2003,135:187-200. doi: 10.1016/S0096-3003(01)00329-0
    [37] Youssef H M.Problem of generalized thermoelastic infinite medium with cylindrical cavity subjected to ramp-type heating and loading[J].Arch Appl Mech,2006,75:553-565. doi: 10.1007/s00419-005-0440-3
    [38] Sinha S B,Elsibai K A.Reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with two relaxation times[J].J Thermal Stresses,1997,20(2):129-145. doi: 10.1080/01495739708956095
    [39] Sharma J N,Kumar V.Plane strain problems of transversely isotropic thermoelastic media[J].J Thermal Stresses,1997,20(5):463-476. doi: 10.1080/01495739708956113
  • 加载中
计量
  • 文章访问数:  1581
  • HTML全文浏览量:  135
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-24
  • 修回日期:  2009-08-24
  • 刊出日期:  2009-12-15

目录

    /

    返回文章
    返回