## 留言板

S·纳丁, A·候赛因. 同伦分析法求解非线性多孔收缩表面上黏性磁流体的流动[J]. 应用数学和力学, 2009, 30(12): 1473-1481. doi: 10.3879/j.issn.1000-0887.2009.12.008
 引用本文: S·纳丁, A·候赛因. 同伦分析法求解非线性多孔收缩表面上黏性磁流体的流动[J]. 应用数学和力学, 2009, 30(12): 1473-1481.
S. Nadeem, Anwar Hussain. MHD Flow of a Viscous Fluid on a Non-Linear Porous Shrinking Sheet by Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1473-1481. doi: 10.3879/j.issn.1000-0887.2009.12.008
 Citation: S. Nadeem, Anwar Hussain. MHD Flow of a Viscous Fluid on a Non-Linear Porous Shrinking Sheet by Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1473-1481.

## 同伦分析法求解非线性多孔收缩表面上黏性磁流体的流动

##### doi: 10.3879/j.issn.1000-0887.2009.12.008

• 中图分类号: O361.3

## MHD Flow of a Viscous Fluid on a Non-Linear Porous Shrinking Sheet by Homotopy Analysis Method

• 摘要: 研究在非线性多孔收缩表面上黏性磁流体(MHD)的流动．先用相似变换简化其控制方程，然后用同伦分析法(HAM)求解该简化问题．用图表的形式对问题的相关参数进行讨论，发现在有磁流体时，收缩解存在．同时得到，在不同参数下f″(0)的解是收敛的．
•  [1] Fang T,Liang W,Lee C F.A new solution branch for the Blasius equation[KG1mm]. —A shrinking sheet problem[J].Computers and Mathematics With Applications, 2008,56(12):3088-3095. [2] Sajid M,Hayat T.The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet[J].Chaos,Solitons & Fractals,2009,39(3):1317-1323. [3] Hayat T,Abbas Z,Javed T,et al.Three-dimensional rotating flow induced by a shrinking sheet for suction[J].Chaos,Solitons & Fractals,2009,39(4):1615-1626. [4] Fang T,Zhang J.Closed-form exact solutions of MHD viscous flow over a shrinking sheet[J].Comm in Non-linear Sci and Numer Sim,2009,14(7):2853-2857. [5] Fang T.Boundary layer flow over a shrinking sheet with power-law velocity[J].Int J of Heat and Mass Transfer,2008,51(25/26):5838-5843. [6] Nadeem S,Awais M.Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity[J].Phy Lett A,2008,372(30):4965-4972. [7] Hayat T,Javed T,Sajid M.Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface[J].Phy Lett A,2008,372(18):3264-3273. [8] Wang C Y.Stagnation flow towards a shrinking sheet[J].Int J of Non-Linear Mech,2008,43(5):377-382. [9] Hayat T,Abbas Z,Ali N.MHD flow and mass transfer of an upper-convected Maxwell fluid past a porous shrinking sheet with chemical reaction species[J].Phy Lett A,2008,372(26):4698-4704. [10] Chaim T C.Hydromagnetic flow over a surface stretching with a power law velocity[J].Int J of Eng Sci,1995,33(3):429-435. [11] Abbas Z,Wanga Y,Hayat T,et al.Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface[J].Int J of Non-Linear Mech,2008,43(8):783-793. [12] Mohamed R A,Abbas I A,Abo-Dahab S M.Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction[J].Comm Non-Linear Sci Numer Sim,2009,14(4):1385-1395. [13] Hayat T,Ali N.A mathematical description of peristaltic hydromagnetic flow in a tube[J].Applied Mathematics and Computation,2007,18(2):1491-1502. [14] Attia H A.Unsteady hydromagnetic Couette flow of dusty fluid with temperature dependent viscosity and thermal conductivity[J].Int J of Non-Linear Mech,2008,43(8):707-715. [15] Tsai R,Huang K H,Huang J S.The effects of variable viscosity and thermal conductivity on heat transfer for hydromagnetic flow over a continuous moving porous plate with Ohmic heating[J].Appl Therm Eng,2009,29(10):1921-1926. [16] Ghosh A K,Sana P.On hydromagnetic flow of an Oldroyd-B fluid near a pulsating plate[J].Acta Astronautica,2009,64(2/3):272-280. [17] Chiam T C.Hydromagnetic flow over a surface stretching with a power-law velocity[J].Int J of Eng Sci,1995,33(3):429-435. [18] Liao S J.Comparison between homotopy analysis method and homotopy perturbation method[J].App Math Comput,2005,169(2):1186-1194. [19] Abbasbandy S.The application of homotopy analysis method to non-linear equations arising in heat transfer[J].Phy Lett A,2006,360(1):109-113. [20] Liao S J,Cheung K F.Homotopy analysis of non-linear progressive waves in deep water[J].J of Eng Math,2003,45(2):105-116. [21] Liao S J.Beyond Perturbation[M].Boca Raton: Chapman & Hall/CRC Press,2003. [22] Rashidi M M,Domairry G,Dinarvand S.Approximate solutions for the Burger and regularized long wave equations by means of the homotopy analysis method[J].Comm in Nonlinear Sci and Nume Sim,2009,14(3):708-717. [23] Chowdhury M S H,Hashim I,Abdulaziz O.Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems[J].Comm in Nonlinear Sci and Numer Sim,2009,14(2):371-378. [24] Bataineh A S,Noorani M S M,Hashim I.On a new reliable modification of homotopy analysis method[J].Comm in Nonlinear Sci and Numer Sim,2009,14(2):409-423. [25] Bataineh A S,Noorani M S M,Hashim I.Modified homotopy analysis method for solving systems of second-order BVPs[J].Comm in Nonlinear Sci and Numer Sim,2009,14(2):430-442. [26] Bataineh A S,Noorani M S M,Hashim I.Solving systems of ODEs by homotopy analysis method[J].Comm in Nonlinear Sci and Numer Sim,2008,13(10):2060-2070. [27] Sajid M,Ahmad I,Hayat T,et al.Series solution for unsteady axisymmetric flow and heat transfer over a radially stretching sheet[J].Comm in Nonlinear Sci and Numer Sim,2008,13(10):2193-2202. [28] Sajid M,Hayat T.Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations[J].Nonlinear Analysis Real World Applications,2008,9(5):2296-2301.

##### 计量
• 文章访问数:  1381
• HTML全文浏览量:  112
• PDF下载量:  632
• 被引次数: 0
##### 出版历程
• 收稿日期:  2009-02-12
• 修回日期:  2009-08-25
• 刊出日期:  2009-12-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈