留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非自治Klein-Gordon-Schrdinger格点动力系统的一致吸引子

黄锦舞 韩晓莹 周盛凡

黄锦舞, 韩晓莹, 周盛凡. 非自治Klein-Gordon-Schrdinger格点动力系统的一致吸引子[J]. 应用数学和力学, 2009, 30(12): 1501-1512. doi: 10.3879/j.issn.1000-0887.2009.12.011
引用本文: 黄锦舞, 韩晓莹, 周盛凡. 非自治Klein-Gordon-Schrdinger格点动力系统的一致吸引子[J]. 应用数学和力学, 2009, 30(12): 1501-1512. doi: 10.3879/j.issn.1000-0887.2009.12.011
HUANG Jin-wu, HAN Xiao-ying, ZHOU Sheng-fan. Uniform Attractor for Non-Autonomous Klein-Gordon-Schrêinger Lattice System[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1501-1512. doi: 10.3879/j.issn.1000-0887.2009.12.011
Citation: HUANG Jin-wu, HAN Xiao-ying, ZHOU Sheng-fan. Uniform Attractor for Non-Autonomous Klein-Gordon-Schrêinger Lattice System[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1501-1512. doi: 10.3879/j.issn.1000-0887.2009.12.011

非自治Klein-Gordon-Schrdinger格点动力系统的一致吸引子

doi: 10.3879/j.issn.1000-0887.2009.12.011
基金项目: 国家自然科学基金资助项目(10771139);上海市教委创新科研资助项目(08ZZ70)
详细信息
    作者简介:

    黄锦舞(1982- ),男,湖北人,硕士(Tel:+86-21-64324910;E-mail:eyesonme_hmily1026@hotmail.com);周盛凡,男,教授(联系人.Tel:+86-21-64323887;E-mail:sfzhou@shnu.edu.cn).

  • 中图分类号: O175.15

Uniform Attractor for Non-Autonomous Klein-Gordon-Schrêinger Lattice System

  • 摘要: 首先证明了耗散的非自治Klein-Gordon-Schrdinger格点动力系统的解确定的一族过程的紧一致吸引子的存在性.其次得到了该紧一致吸引子的Kolmogorov熵的一个上界.最后建立了该紧一致吸引子的上半连续性.
  • [1] Bate P W, Lisei H,Lu K.Attractors for stochastic lattice dynamical systems[J].Stochastic and Dynamics,2006,6(1):1-21. doi: 10.1142/S0219493706001621
    [2] Beyn W J,Pilyugin S Y.Attractors of reaction-diffusion systems on infinite lattices[J].J Dyna Diff Equa,2003,15(2/3):485-515. doi: 10.1023/B:JODY.0000009745.41889.30
    [3] Lv Y,Sun J.Dynamical behaviour for stochastic lattice systems[J].Chaos, Silitons and Fractals,2006,27(4):1080-1090. doi: 10.1016/j.chaos.2005.04.089
    [4] Li X,Wang D.Attractors for partly dissipative lattice dynamical systems in weighted spaces[J].J Math Anal Appl,2007,325(26):141-156. doi: 10.1016/j.jmaa.2006.01.054
    [5] Li X J,Zhong C K.Attractors for partly diassipative lattice dynamical systems in L2×L2[J].J Comp Appl Math,2005,177(1):159-174. doi: 10.1016/j.cam.2004.09.014
    [6] Vleck E V,Wang B.Attractors for lattice Fitz Hugh-Nagumo systems[J].Physica D,2005,212(3/4):317-336. doi: 10.1016/j.physd.2005.10.006
    [7] Wang B.Dynamics of systems on infinite lattices[J].J Diff Equa,2006,221(1):224-245. doi: 10.1016/j.jde.2005.01.003
    [8] Wang B.Asymptotic behaviour of non-autonomous lattice systems[J].J Math Anal Appl,2007,331(1):121-136. doi: 10.1016/j.jmaa.2006.08.070
    [9] Zhao C,Zhou S.Compact uniform attractors for dissipative lattice dynamical systems with delays[J].Disc Cont Dyna Systems,2008,21(2):643-663. doi: 10.3934/dcds.2008.21.643
    [10] Zhao X,Zhou S.Kernel sections for process and non-autonomous lattice systems[J].Disc Cont Dyna Systems,Series B,2008,9(3/4):763-785. doi: 10.3934/dcdsb.2008.9.763
    [11] Zhou S, Zhao C,Liao X. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems[J].Comm Pure Appl Anal,2007,6(4):1087-1111. doi: 10.3934/cpaa.2007.6.1087
    [12] Zhou S, Zhou C,Wang Y.Finite dimensionality and upper semicontinuity of compact kernel section of non-autonomous lattice systems[J].Disc Cont Dyna Systems,2008,21(4):1259-1277. doi: 10.3934/dcds.2008.21.1259
    [13] Zhou S,Shi W.Attractors and dimension of dissipative lattice systems[J].J Diff Equa,2006,224(1):172-204. doi: 10.1016/j.jde.2005.06.024
    [14] Chepyzhov V V,Vishik M I.Attrators for Equations of Mathematical Physics[M].America:American Mathematical Society,Colloquium Publications, 2002.
    [15] Abdallah A Y. Asymptotic bahaviour of the Klein-Gordon-Schrdinger lattice dynamical systems[J].Communications on Pure and Applied Analysis,2006,5(1):55-69.
    [16] 尹福其,周盛凡,殷苌茗,等.KGS格点系统的全局吸引子[J].应用数学和力学,2007,28(5):619-630.
    [17] Zhao C,Zhou S.Compact kernel sections for non-autonomous Klein-Gordon-Schrdinger equation on infinite lattices[J].J Math Anal Appl,2007,332(1):32-56. doi: 10.1016/j.jmaa.2006.10.002
    [18] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations[M].New York:Springer-Verlag,2007.
    [19] Zhou S. Attractors for first order dissipative lattice dynamical systems[J].Phys D,2003,178(1):51-61. doi: 10.1016/S0167-2789(02)00807-2
  • 加载中
计量
  • 文章访问数:  1439
  • HTML全文浏览量:  100
  • PDF下载量:  815
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-13
  • 修回日期:  2009-10-19
  • 刊出日期:  2009-12-15

目录

    /

    返回文章
    返回