## 留言板

 引用本文: 戎海武, 王向东, 罗旗帜, 徐伟, 方同. 窄带随机噪声激励下线性碰撞系统的响应[J]. 应用数学和力学, 2011, 32(9): 1084-1091.
RONG Hai-wu, WANG Xiang-dong, LUO Qi-zhi, XU Wei, FANG Tong. Subharmonic Response of a Single-Degree-of-Freedom Linear Vibroimpact System to a Narrow-Band Random Excitation[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1084-1091. doi: 10.3879/j.issn.1000-0887.2011.09.007
 Citation: RONG Hai-wu, WANG Xiang-dong, LUO Qi-zhi, XU Wei, FANG Tong. Subharmonic Response of a Single-Degree-of-Freedom Linear Vibroimpact System to a Narrow-Band Random Excitation[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1084-1091.

• 中图分类号: O324

## Subharmonic Response of a Single-Degree-of-Freedom Linear Vibroimpact System to a Narrow-Band Random Excitation

• 摘要: 研究了单自由度线性单边碰撞系统在窄带随机噪声激励下的次共振响应问题．用Zhuravlev变换将碰撞系统转化为连续的非碰撞系统，然后用随机平均法得到了关于慢变量的随机微分方程．在约束距离为0时，用矩方法给出了系统响应幅值二阶矩的解析表达式．在约束距离不为0时，近似地得到了系统响应幅值二阶矩的解析表达式．讨论了系统阻尼项、窄带随机噪声的带宽和中心频率以及碰撞恢复系数等参数对于系统响应的影响．理论计算和数值模拟表明，系统响应幅值将在激励频率接近于次共振频率时达到最大，而当激励频率逐渐偏离次共振频率时，系统响应迅速衰减．数值模拟表明提出的方法是有效的．
•  [1] 金栋平，胡海岩.碰撞振动与控制[M]. 第一版.北京：科学出版社，2005.(JIN Dong-ping, HU Hai-yan. Impact Vibration and Control[M]. 1st ed. Beijing: Science Press, 2005. (in Chinese)) [2] Dimentberg M F, Ioutchenko D V. Random vibrations with impacts: a review[J]. Nonlinear Dynamics, 2004, 36(2/4):229-254. [3] Metrikyn V S. On the theory of vibro-impact devices with randomly varying parameters[J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 1970, 13: 4-6.( in Russian) [4] Stratonovich R L. Topics in the Theory of Random Noise[M]. Vol 1/2. New York: Gordon and Breach, 1963, 1967. [5] Dimentberg M F, Menyailov A. Certain stochastic problems of vibroimpact systems[J]. Mechanics of Solids, 1976, 11(2): 4-7. [6] Jing H S, Sheu K C. Exact stationary solutions of the random response of a single-degree-of-freedom vibroimpact system[J]. Journal of Sound and Vibration, 1990, 141(3): 363-373. [7] Jing H S, Young M. Random response of a single-degree-of-freedom vibroimpact system with clearance[J]. Earthquake Engineering and Structural Dynamics, 1990, 19(6): 789-798. [8] Huang Z L, Liu Z H, Zhu W Q. Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations[J]. Journal of Sound and Vibration, 2004, 275(1/2): 223-240. [9] FENG Jin-qian, XU Wei, RONG Hai-wu, WANG Rui. Stochastic response of Duffing-van der Pol vibro-impact system under additive and multiplicative random excitations[J]. International Journal of Non-Linear Mechanics, 2009, 44(1):51-57. [10] Zhuravlev V F. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1976, 11(2): 23-27. [11] Dimentberg M F. Random vibrations of an isochronous SDOF bilinear system[J]. Nonlinear Dynamics, 1996, 11(4): 401-405. [12] Iourtchenko D V, Dimentberg M F. Energy balance for random vibrations of piecewise-conservative systems[J]. Journal of Sound and Vibration, 2001, 248(5): 913-923. [13] Feng Q, He H. Modeling of the mean Poincaré map on a class of random impact oscillators[J]. European Journal of Mechanics A/Solids, 2003, 22(2): 267-281. [14] Iourtchenko D V, Song L L. Numerical investigation of a response probability density function of stochastic vibroimpact systems with inelastic impacts[J]. International Journal of Non-Linear Mechanics, 2006, 41(3):447-455. [15] Dimentberg M F, Iourtchenko D V, Vanewijk O. Subharmonic response of a quasi-isochronous vibroimpact system to a randomly disordered periodic excitation[J]. Nonlinear Dynamics, 1998, 17(2): 173-186. [16] Nayfeh A H, Serhan S J. Response statistics of nonlinear systems to combined deterministic and random excitations[J]. International Journal of Non-Linear Mechanics, 1990, 25(5):493-509. [17] Zhuravlev V F. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1976, 11(2):23-27.(English translation of the Russian journal Mekhanika Tverdogo Tela) [18] Sanders J, Verhulst F. Averaging Methods in Nonlinear Dynamical Systems[M]. New York: Springer-Verlag, 1985. [19] 朱位秋.随机振动[M].北京：科学出版社，1992.(ZHU Wei-qiu. Random Vibration[M]. Beijing: Science Press, 1992. (in Chinese)) [20] Shinozuka M. Simulation of multivariate and multidimensional random processes[J]. Journal of Sound and Vibration, 1971, 19(4): 357-367. [21] Shinozuka M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1): 111-128. [22] RONG Hai-wu, XU Wei, MENG Guang, FANG Tong. Response of Duffing oscillator to combined deterministic harmonic and random excitation[J]. Journal of Sound and Vibration, 2001, 242(2):362-368. [23] 马少娟, 徐伟, 李伟, 靳艳飞. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析[J]. 物理学报, 2005, 54(8)：3508-3515.(MA Shao-juan, XU Wei, LI Wei, JIN Yan-fei. Period-doubling bifurcation analysis of stochastic van der Pol system via Chebyshev polynomial approximation[J]. Acta Physica Sinica, 2005, 54(8)：3508-3515. (in Chinese))

##### 计量
• 文章访问数:  1713
• HTML全文浏览量:  140
• PDF下载量:  740
• 被引次数: 0
##### 出版历程
• 收稿日期:  2010-11-12
• 修回日期:  2011-06-16
• 刊出日期:  2011-09-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈